Analysis of vertebrotomy treatment in children with congenital scoliosis with unsegmented rod and rib synostosis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Congenital anomalies of vertebral development account for 2%–11% of cases in the general structure of nosologies that cause spinal deformity. An unsegmented rod (unilateral violation of vertebral segmentation) is attributed to a prognostically unfavorable malformation. Rib synostosis causes the development of thoracic insufficiency syndrome.

AIM: To analyze the results of treatment of children with congenital scoliosis caused by an unsegmented rod and rib synostosis by vertebrotomy.

MATERIALS AND METHODS: This cohort, retrospective, monocenter study evaluated the treatment results of 55 patients. The patients were divided into two groups: group 1, children aged 2–8 years, the scope of intervention was wedge-shaped osteotomy of a non-segmented rod at the apex of the deformity, and group 2, children aged 8–18 years, the scope of intervention was wedge-shaped osteotomy at the apex of the deformity and two linear osteotomies of a non-segmented rod in the cranial and caudal directions. Clinical, radiological, and statistical research methods were used.

RESULTS: Significant correction of scoliosis was achieved in 65.5% of patients aged 2–7 years (group 1) and 56.3% in children aged 8–18 years (group 2). Hypokyphosis of the thoracic spine was observed in the patients. The percentage of correction of kyphosis was 21.1% in group 1 and 19.1% in group 2. Lung volume increased by 27.9% (p = 0.01776) in group 1, and lung volume on the concave side increased by 23.5% (p = 0.04975) and on the convex side by 29.6% (p = 0.01073). Improvement in the overall respiratory impedance reached 47.3% (p < 0.05). In group 2, a insignificant increase was found in VVC by 12.6% (p = 0.3509) and FEV1 by 8.7% of the initial (p = 0.1534), as well as an increase in total lung volume of 13.3% (p = 0.1527) and the contribution of the lung along the concave side of 18.8% (p = 0.1535), and the lung along the convex side was 8.4% (p = 0.169), indicating no significant impact on lung development and function.

CONCLUSIONS: In children with spinal deformity caused by a non-segmented rod with normal respiratory function, vertebrotomy at the apex of the deformity with subsequent correction and stabilization of the spinal deformity is recommended. Performing simultaneous multilevel osteotomies of a non-segmented rod allows for significant correction of rigid spinal deformity.

Full Text

Restricted Access

About the authors

Marat S. Asadulaev

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN-code: 3336-8996

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Sergei V. Vissarionov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930

MD, PhD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS

Russian Federation, Saint Petersburg

Anton S. Shabunin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: anton-shab@yandex.ru
ORCID iD: 0000-0002-8883-0580
SPIN-code: 1260-5644
Russian Federation, Saint Petersburg

Kristina N. Rodionova

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: rkn0306@mail.ru
ORCID iD: 0000-0001-6187-2097
SPIN-code: 4627-3979
Russian Federation, Saint Petersburg

Yury A. Novosad

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: yurynovosad@gmail.com
ORCID iD: 0000-0002-6150-374X
SPIN-code: 3001-1467

PhD student

Russian Federation, Saint Petersburg

Vakhtang G. Toriya

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vakdiss@yandex.ru
ORCID iD: 0000-0002-2056-9726
SPIN-code: 1797-5031

MD

Russian Federation, Saint Petersburg

Dmitry N. Kokushin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: partgerm@yandex.ru
ORCID iD: 0000-0002-2510-7213
SPIN-code: 9071-4853

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Nikita O. Khusainov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: nikita_husainov@mail.ru
ORCID iD: 0000-0003-3036-3796
SPIN-code: 8953-5229

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Aleksandra N. Filippova

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: alexandrjonok@mail.ru
ORCID iD: 0000-0001-9586-0668
SPIN-code: 2314-8794

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Dmitry V. Ryzhikov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: dryjikov@yahoo.com
ORCID iD: 0000-0002-7824-7412
SPIN-code: 7983-4270

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

References

  1. Zhang YB, Zhang JG. Treatment of early-onset scoliosis: techniques, indications, and complications. Chin Med J (Engl). 2020;133(3):351–357. doi: 10.1097/CM9.0000000000000614
  2. Lu D, Wu X, Zhao Y, et al. Orthopedic mechanism analysis of growing rod distraction for early-onset scoliosis based on 3D morphological parameters. J Orthop Res. 2024;42(3):685–699. doi: 10.1002/jor.25697
  3. Stücker R, Mladenov K, Stücker S. Growth-preserving instrumentation for early onset scoliosis. Oper Orthop Traumatol. 2023; 36(1):12–20. (In Ger.). doi: 10.1007/s00064-023-00832-8
  4. Vissarionov SV, Asadulaev MS, Khardikov MA, et al. Spinal osteotomy for children with congenital scoliosis with unilateral unsegmented bar: preliminary results. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(4):417–426. EDN: MXUSQH doi: 10.17816/PTORS77239
  5. Zhang HQ, Xiao LG, Guo CF, et al. Deformed complex vertebral osteotomy technique for management of severe congenital spinal angular kyphotic deformity. Orthop Surg. 2021;13(3):1016–1025. doi: 10.1111/os.13016
  6. Ha AS, Cerpa M, Lenke LG. State of the art review: vertebral osteotomies for the management of spinal deformity. Spine Deform. 2020;8(5):829–843. doi: 10.1007/s43390-020-00144-y
  7. Zhao S, Xue X, Li K, et al. Two-staged posterior osteotomy surgery in complex and rigid congenital scoliosis in younger than 10 years old children. BMC Musculoskelet Disord. 2021;22(1):788. doi: 10.1186/s12891-021-04682-y
  8. Karol LA. The natural history of early-onset scoliosis. J Pediatr Orthop. 2019;39(6):S38–S43. doi: 10.1097/BPO.0000000000001351
  9. Xia T, Sun Y, Wang S, et al. Vertebral artery variation in patients with congenital cervical scoliosis: an anatomical study based on radiological findings. Spine (Phila Pa 1976). 2021;46(4):E216–E221. doi: 10.1097/BRS.0000000000003834
  10. McMaster MJ, McMaster ME. Prognosis for congenital scoliosis due to a unilateral failure of vertebral segmentation. J Bone Joint Surg Am. 2013;95(11):972–979. doi: 10.2106/JBJS.L.01096
  11. Li S, Ou Y, Liu B, et al. Comparison of osteotomy versus non-osteotomy approach for congenital scoliosis: a retrospective study of three surgical techniques. ANZ J Surg. 2015;85(4):249–254. doi: 10.1111/ans.12886
  12. Mikhailovsky MV, Suzdalov VA. Thoracic insufficiency syndromein infantile congenital scoliosis. Russian Journal of Spine Surgery. 2010;(3):20–28. EDN: MUPPHZ doi: 10.14531/ss2010.3.20-28
  13. Mayer O, Campbell R, Cahill P, et al. Thoracic insufficiency syndrome. Curr Probl Pediatr Adolesc Health Care. 2016;46(3):72–97. doi: 10.1016/j.cppeds.2015.11.001
  14. Campbell RM Jr, Smith MD, Mayes TC, et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2003;85(3):399–408. doi: 10.2106/00004623-200303000-00001
  15. Romberg K, Fagevik Olsén M, Kjellby-Wendt G, et al. Thoracic mobility and its relation to pulmonary function and rib-cage deformity in patients with early onset idiopathic scoliosis: a long-term follow-up. Spine Deform. 2020;8(2):257–268. doi: 10.1007/s43390-019-00018-y
  16. Hedequist DJ. Surgical treatment of congenital scoliosis. Orthop Clin North Am. 2007;38(4):497–vi. doi: 10.1016/j.ocl.2007.05.002
  17. Lattig F, Taurman R, Hell AK. Treatment of Early-Onset Spinal Deformity (EOSD) with VEPTR. Clin Spine Surg. 2016;29(5):E246–E251. doi: 10.1097/BSD.0b013e31826eaf27
  18. Skaggs DL, Guillaume T, El-Hawary R, et al. Early Onset Scoliosis Consensus Statement, SRS Growing Spine Committee, 2015. Spine Deformity. 2015:3(2);107. doi: 10.1016/j.jspd.2015.01.002
  19. Liu Z, Cheng Y, Hai Y, et al. Developments in congenital scoliosis and related research from 1992 to 2021: a thirty-year bibliometric analysis. World Neurosurg. 2022;164:e24–e44. doi: 10.1016/j.wneu.2022.02.117
  20. Ryabyh SO, Ul’rih EV, Mushkin, et al. Treatment of congenital spinal deformities in children: yesterday, today, tomorrow. Russian Journal of Spine Surgery. 2020;17(1):15–24. doi: 10.14531/ss2020.1.15-24
  21. Winter RB. Congenital thoracic scoliosis with unilateral unsegmented bar, convex hemivertebrae, and fused concave ribs with severe progression after posterior fusion at age 2: 40-year follow-up after revision anterior and posterior surgery at age 8. Spine (Phila Pa 1976). 2012;37(8):E507–E510. doi: 10.1097/BRS.0b013e31824ac401
  22. Abdelaal A, Munigangaiah S, Davidson N, et al. Early-onset scoliosis: challenges and current management options. Orthopaedics and Trauma. 2020;34(6):390–396. doi: 10.1016/j.mporth.2020.09.009
  23. Cheung JPY, Yiu K, Kwan K, et al. Mean 6-year follow-up of magnetically controlled growing rod patients with early onset scoliosis: a glimpse of what happens to graduates. Neurosurgery. 2019;84(5):1112–1123. doi: 10.1093/neuros/nyy270
  24. Sun X, Xu L, Chen ZH, et al. Comparison of hybrid and traditional growing rod techniques in the treatment of early-onset congenital scoliosis. Zhonghua Wai Ke Za Zhi. 2019;57(5):342–347. (In Chi.) doi: 10.3760/cma.j.issn.0529-5815.2019.05.005
  25. Dayer R, Ceroni D, Lascombes P. Treatment of congenital thoracic scoliosis with associated rib fusions using VEPTR expansion thoracostomy: a surgical technique. Eur Spine J. 2014;23(4):424–431. doi: 10.1007/s00586-014-3338-3
  26. Campbell RM Jr, Smith MD, Mayes TC, et al. The effect of opening wedge thoracostomy on thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2004;86(8):1659–1674. doi: 10.2106/00004623-200408000-00009
  27. Diméglio A, Canavese F. The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J Springer-Verlag. 2012;21(1):64–70. doi: 10.1007/s00586-011-1983-3
  28. Sankar WN, Acevedo DC, Skaggs DL. Comparison of complications among growing spinal implants. Spine (Phila Pa 1976). 2010;35(23):2091–2096. doi: 10.1097/BRS.0b013e3181c6edd7
  29. Schlösser TPC, Kruyt MC, Tsirikos AI. Surgical management of early-onset scoliosis: indications and currently available techniques. Orthopaedics and Trauma. 2021;35(6):1–11. doi: 10.1016/j.mporth.2021.09.004
  30. Caliskan E, Ozturk M. Determination of normal lung volume using computed tomography in children and adolescents. Original Article. 2019;26(4):588–592. doi: 10.5455/annalsmedres.2018.12.308
  31. Patent RUS N 196831 / 21.04.2023. Vissarionov SV, Asadulaev MS, Kokushin DN. Method of correction of congenital spinal deformity with segmentation disorder of lateral surfaces of vertebral bodies in school-age children. EDN: LEBRZL (In Russ.)
  32. Tong Y, Udupa JK, McDonough JM, et al. Quantitative dynamic thoracic MRI: application to thoracic insufficiency syndrome in pediatric patients. J Radiology. 2019;292(1):206–213. doi: 10.1148/radiol.2019181731
  33. Cunin V. Early-onset scoliosis: current treatment. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S109–S118. doi: 10.1016/j.otsr.2014.06.032
  34. Zhang YB, Zhang JG. Treatment of early-onset scoliosis: techniques, indications, and complications. Chin Med J (Engl). 2020;133(3):351–357. doi: 10.1097/CM9.0000000000000614
  35. Mackel CE, Jada A, Samdani AF, et al. A comprehensive review of the diagnosis and management of congenital scoliosis. Childs Nerv Syst. 2018;34(11):2155–2171. doi: 10.1007/s00381-018-3915-6
  36. Yang S, Andras LM, Redding GJ, et al. Early-onset scoliosis: a review of history, current treatment, and future direction. Pediatrics. 2016;137(1). doi: 10.1542/peds.2015-0709
  37. Chao Li C, Fu Q, Zhou Y, et al. Surgical treatment of severe congenital scoliosis with unilateral unsegmented bar by concave costovertebral joint release and both-ends wedge osteotomy via posterior approach. Eur Spine J. 2012;21(3):498–505. doi: 10.1007/s00586-011-1972-6
  38. Suk SI, Chung ER, Kim JH, et al. Posterior vertebral column resection for severe rigid scoliosis. Spine (Phila Pa 1976). 2005;30(14):1682–1687. doi: 10.1097/01.brs.0000170590.21071.c1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Normal distribution of the values for all study patients in the sagittal and frontal planes.

Download (129KB)
3. Fig. 2. Wedge osteotomy of the unsegmented bar at the apex of deformity in Group 1: a, before treatment; b, after treatment. 1, unsegmented bar; 2, intervertebral disc; 3, area of wedge osteotomy of the unsegmented bar; 4, post-correction osteotomy area; 5, cranial portion of the superjacent vertebra; 6, caudal portion of the subjacent vertebra.

Download (86KB)
4. Fig. 3. View of the dorsal bone structures of the spine after a wedge vertebrotomy with subsequent correction and stabilization using a screw fixation system in a patient from Group 1. 1, area of wedge osteotomy; 2, pedicular screws; 3, bar; 4, soft tissues.

Download (133KB)
5. Fig. 4. Three-level, one-stage osteotomy of the unsegmented bar in Group 2: a, before treatment; b, after treatment. 1, vertebral body; 2, unilateral vertebral segmentation failure; 3, area of wedge vertebrotomy; 4, area of cranial osteotomy of the unsegmented bar; 5, area of caudal osteotomy of the unsegmented bar; 6, spinal screw fixation system; 7, correction vector along the concave side (distraction); 8, correction vector along the convex side (contraction).

Download (97KB)
6. Fig. 5. Surgical wound: a, before correction; b, after screw implantation, three-level osteotomies of the unsegmented bar, and deformity correction. 1, unilateral vertebral segmentation failure; 2, area of wedge vertebrotomy; 3, area of cranial osteotomy of the unsegmented bar; 4, area of caudal osteotomy of the unsegmented bar; 5, spinal screw fixation system.

Download (300KB)
7. Fig. 6. Incidence of thoracic segmentation failure.

Download (102KB)
8. Fig. 7. A 12-year-old patient diagnosed with a congenital spinal deformity associated with vertebral segmentation failure and rib synostosis: a and b, preoperative spinal X-ray images; c and d, postoperative spinal X-ray images.

Download (199KB)
9. Fig. 8. Changes in scoliosis and kyphosis curvatures in Group 1.

Download (121KB)
10. Fig. 9. Changes in scoliosis and kyphosis curvatures in Group 2.

Download (121KB)
11. Fig. 10. Changes in lung volume in Group 1 over the treatment period.

Download (133KB)
12. Fig. 11. Changes in lung volume in Group 2 over the treatment period.

Download (128KB)

Copyright (c) 2024 Эко-Вектор



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.