Comparative analysis of arthroscopic techniques for fixation of tibial intercondylar eminence avulsion fractures in children

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Avulsion fracture of the tibial intercondylar eminence is a rare injury, which commonly occurs in adolescents aged 8–14 years, and may result in disability caused by improper bone union. Several surgical techniques for the treatment of patients with such fractures have been developed, involving various methods of fixation for the avulsed fragment of the tibial intercondylar eminence.

AIM: To evaluate the effectiveness of the novel technique for the treatment of type III tibial intercondylar eminence avulsion fractures according to the Meyers–McKeever–Zariczny classification in children with open growth plates and compare its outcomes to those of arthroscopically assisted reduction and fixation of the avulsed fragment using a Herbert screw.

METHODS: Functional outcomes in 45 children aged 14–17 years with tibial intercondylar eminence fractures were analyzed at 3, 6, and 12 months after surgery. Group A included 22 children who underwent arthroscopic fixation with a Herbert screw. Group B comprised 23 children who underwent arthroscopic fixation using a self-tightening suture loop following the novel method.

RESULTS: Group B demonstrated better anteroposterior and rotational stability of the knee than group A. Postoperative functional assessment scores (IKDC 2000, Lysholm Knee Scoring Scale, and Tegner Activity Scale) were significantly better in group B than in group A (p = 0.00006). In group A, postoperative complications were observed in 18.1% of cases (p ≤ 0.05), including screw fracture (4.5%) and aseptic synovitis due to a foreign body reaction (13.6%). No postoperative complications were noted in group B (p < 0.05).

CONCLUSION: The proposed technique for treating tibial intercondylar eminence avulsion fractures in children with open growth plates is more reliable and safer compared with Herbert screw fixation and may be recommended for clinical practice.

Full Text

Restricted Access

About the authors

Marsel R. Salikhov

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: virus-007-85@mail.ru
ORCID iD: 0000-0002-5706-481X
SPIN-code: 2009-4349

MD, PhD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Vladislav V. Avramenko

Saint Petersburg State Pediatric Medical University

Email: avramenko.spb@mail.ru
ORCID iD: 0000-0003-0339-6066
SPIN-code: 4632-9953

MD

Russian Federation, Saint Petersburg

Gleb E. Batalov

Vreden National Medical Research Center of Traumatology and Orthopedics

Email: Batalovgl@yandex.ru
ORCID iD: 0009-0006-5266-8530

MD

Russian Federation, Saint Petersburg

Vadim V. Kemkin

Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: vkemkin@mail.ru
ORCID iD: 0009-0002-7101-906X

MD

Russian Federation, Saint Petersburg

References

  1. Patel N, Gandhi J, Talathi N, et al. Tibial spine fractures in children: evaluation, management, and future directions. J Knee Surg. 2018;31(5):374–381. doi: 10.1055/s-0038-1636544
  2. Gofer AS, Alekperov AA, GeraznevMB, et al. Revision anterior cruciate ligament reconstruction: current approaches to preoperative planning (systematic review). Traumatology and Orthopedics of Russia. 2023;29:(3):136–148. doi: 10.17816/2311-2905-2130
  3. Skak SV, Jensen TT, Poulsen TD, et al. Epidemiology of knee injuries in children. Acta Orthop Scand. 1987;58(1):78–81. doi: 10.3109/17453678709146348
  4. Lubowitz JH, Elson WS, Guttmann D. Part II: arthroscopic treatment of tibial plateau fractures: intercondylar eminence avulsion fractures. Arthroscopy. 2005;21(1):86–92. doi: 10.1016/j.arthro.2004.09.031
  5. Shin YW, Kim DW, Park KB. Tibial tubercle avulsion fracture according to different mechanisms of injury in adolescents: tibial tubercle avulsion fracture. Medicine (Baltimore). 2019;98(32):e16700. doi: 10.1097/MD.0000000000016700
  6. Lin L, Liu Y, Lin C, et al. Comparison of three fixation methods in treatment of tibial fracture in adolescents. ANZ J Surg. 2018;88(6):E480–E485. doi: 10.1111/ans.14258
  7. Leeberg V, Lekdorf J, Wong C, et al. Tibial eminentia avulsion fracture in children—a systematic review of the current literature. Dan Med J. 2014;61(3):A4792
  8. Tibial Spine Research Group; Prasad G, Aoyama N, et al. A comparison of non- operative and operative treatment of type 2 tibial spine fractures. Orthop J Sports Med. 2021;9(1):2325967120975410. doi: 10.1177/2325967120975410
  9. Casalonga A, Bourelle S, Chalencon F, et al. Tibial intercondylar eminence fractures in children: the long-term perspective. Orthop Traumatol Surg Res. 2010;96(5):525–530. doi: 10.1016/j.otsr.2010.01.012
  10. Gobbi A, Herman K, Grabowski R, et al. Primary anterior cruciate ligament repair with hyaluronic scaffold and autogenous bone marrow aspirate augmentation in adolescents with open physes. Arthrosc Tech. 2019;8:e1561–e1568. doi: 10.1016/j.eats.2019.08.016
  11. Niu WJ, Huang LA, Zhou X, et al. Clinical effects of arthroscopy-assisted anterior cruciate ligament tibial eminence avulsion fracture compared with traditional open surgery: a Meta-analysis. Zhongguo Gu Shang. 2022;35:292–299. doi: 10.12200/j.issn.1003-0034.2022.03.018
  12. Mutchamee S, Ganokroj P. Arthroscopic transosseous suture-bridge fixation for anterior cruciate ligament tibial avulsion fractures. Arthrosc Tech. 2020;9(10):e1607–e1611. doi: 10.1016/j.eats.2020.05.005
  13. Salikhov MR, Avramenko VV. Comparative analysis of arthroscopic techniques of anterior Cruciate ligament reconstruction in adolescents. Pediatric Traumatology Orthopaedics and Reconstructive Surgery. 2020:8(3):259–268. EDN: LDAAFA doi: 10.17816/PTORS34050
  14. Lu HD, Zeng C, Dong YX, et al. Treatment of tibial avulsion fracture of the posterior cruciate ligament with open reduction and steel-wire internal fixation. Zhongguo Gu Shang. 2011;24(3):195–198.
  15. Bisping L, Lenz R, Lutter C, et al. Hyperflexion knee injury with anterior cruciate ligament rupture and avulsion fractures of both posterior meniscal attachments: a case report. JBJS Case Connect. 2020;10(3):e1900541. doi: 10.2106/JBJS.CC.19.00541
  16. Eurasian Patent N 045186 / 31.10.23. Avramenko VV, Salikhov MR, Kemkin VV. Method of arthroscopic treatment of patients with an avulsive fracture of the intercondylar elevation of the tibia.
  17. Kendall NS, Hsu SY, Chan KM. Fracture of the tibial spine in adults and children. A review of 31 cases. J Bone Joint Surg Br. 1992;74(6):848–852. doi: 10.1302/0301-620X.74B6.1447245
  18. Osti L, Buda M, Soldati F, et al. Arthroscopic treatment of tibial eminence fracture: a systematic review of different fixation methods. Br Med Bull. 2016;118(1):77–94. doi: 10.1093/bmb/ldw018
  19. Bogunovic L, Tarabichi M, Harris D, et al. Treatment of tibial eminence fractures: a systematic review. J Knee Surg. 2015;28(3):255–262. doi: 10.1055/s-0034-1388657
  20. Rajanish R, Mohammed J, Chandhan M, et al. Arthroscopic tibial spine fracture fixation: novel techniques. J Orthop. 2018;15(2):373–374. doi: 10.1016/j.jor.2018.01.056
  21. Bachmann KR, Edmonds EW. The pediatric ACL: tibial spine fracture. In: Parikh S, editor. The pediatric anterior cruciate ligament. Springer, Cham; 2018. P. 211–222. doi: 10.1007/978-3-319-64771-5_20
  22. Sang W, Zhu L, Ma J, et al. A comparative study of two methods for treating type III tibial eminence avulsion fracture in adults. Knee Surg Sports Traumatol Arthrosc. 2012;20:1560. doi: 10.1007/s00167-011-1760-1
  23. Hapa O, Barber FA, Süner G, et al. Biomechanical comparison of tibial eminence fracture fixation with high-strength suture, EndoButton, and suture anchor. Arthroscopy. 2012;28(5):681–687. doi: 10.1016/j.arthro.2011.10.026
  24. Gaspar L, Farkas C, Csernatony Z. Acute arthroscopy. Acta Chir Hung. 1997;36(1–4):100–103.
  25. Oohashi Y. A simple technique for arthroscopic suture fixateon of displaced fracture of the intercondylar eminence of the tibia using folded surgical steels. Arthroscopy. 2001;17(9):1007–1011. doi: 10.1053/jars.2001.24706
  26. Gamboa JT, Durrant BA, Pathare NP, et al. Arthroscopic reduction of tibial spine avulsion: suture lever reduction technique. Arthrosc Tech. 2017;6(1):e121–e126. doi: 10.1016/j.eats.2016.09.010
  27. Reynders P, Reynders K, Broos P. Pediatric and adolescent tibial eminence fractures: arthroscopic cannulated screw fixation. J Trauma. 2002;53(1):49–54. doi: 10.1097/00005373-200207000-00011
  28. Loriaut P, Moreau PE, Loriaut P, et al. Arthroscopic treatment of displaced tibial eminence fractures using a suspensory fixation. Indian J Orthop. 2017;51(2):187–191. doi: 10.4103/0019-5413.201706
  29. Mosier SM, Stanitski CL. Acute tibial tubercle avulsion fractures. J Pediatr Orthop. 2004;24(2):181–184. doi: 10.1097/00004694-200403000-00009
  30. Wiegand N, Naumov I. Detached ACL reinsertion with MITEK refixation device. Magy Traumatol Ortop Kezseb Plasztikai Seb. 2000;43:27–32.
  31. Hunter RE, Willis JA. Arthroscopic fixation of avulsion fractures of the tibial eminence: technique and outcome. Arthroscopy. 2004;20(2):113–21. doi: 10.1016/j.arthro.2003.11.028
  32. Senekovic V, Veselko M. Anterograde arthroscopic fixation of avulsion fractures of the tibial eminence with a cannulated screw: five-year results. Arthroscopy. 2003;19(1):54–61. doi: 10.1053/jars.2003.50012
  33. Callanan M, Allen J, Flutie B, et al. Suture versus screw fixation of tibial spine fractures in children and adolescents: a comparative study. Orthop J Sports Med. 2019;7(11):2325967119881961. doi: 10.1177/2325967119881961
  34. Anderson CN, Nyman JS, Mccullough KA, et al. Biomechanical evaluation of physeal-sparing fixation methods in tibial eminence fractures. Am J Sports Med. 2013;41(7):1586–94. doi: 10.1177/0363546513488505
  35. Bong MR, Romero A, Kubiak E, et al. Suture versus screw fixation of displaced tibial eminence fractures: a biomechanical comparison. Arthroscopy. 2005;21(10):1172–1176. doi: 10.1016/j.arthro.2005.06.019
  36. Senekovic V, Balazic M. Bioabsorbable sutures versus screw fixation of displaced tibial eminence fractures: a biomechanical study. Eur J Orthop Surg Traumatol. 2014;24(2):209–216. doi: 10.1007/s00590-013-1176-3
  37. Delcogliano A, Chiossi S, Caporaso A, et al. Tibial intercondylar eminence fractures in adults: arthroscopic treatment. Knee Surg Sports Traumatol Arthrosc. 2003;11(4):255–259. doi: 10.1007/s00167-003-0373-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Computed tomography scan of a patient with a right tibial intercondylar eminence fracture: (a) coronal view; (b) sagittal view.

Download (114KB)
3. Fig. 2. Tibial guide placement during anterior cruciate ligament reconstruction. БК, femur; ББК, tibia; 1, anterior cruciate ligament; 2, working tip of the guide placed at the center of the tibial eminence fragment; 3, tibial guide from a standard ACL reconstruction set, positioned at a 55° angle relative to the tibial plateau.

Download (106KB)
4. Fig. 3. Passage of the 2.5-mm guidewire. The distal guidewire tip exited in the anterior intercondylar area of the tibia: БК, femur; ББК, tibia; 1, anterior cruciate ligament; 2, distal tip of the guidewire emerging in the anterior intercondylar area of the tibia via the center of the tibial eminence fragment; 3, tibial guide from a standard ACL reconstruction set positioned at a 55° angle relative to the tibial plateau; 4, guidewire.

Download (105KB)
5. Fig. 4. Arthroscopic passage of the free ends of the self-tightened suture loop through the guidewire eyelet. БК, femur; ББК, tibia; 1, intra-articular plate attached to the self-tightened suture loop; 2, free ends of the suture loop inserted through the guidewire; 3, guidewire with a preloaded shuttle suture.

Download (77KB)
6. Fig. 5. Image of the implant (self-tightening suture loop with a plate) placed over the tibial intercondylar eminence fragment: 1, free ends of the self-tightening suture loop; 2, intra-articular plate fixed on the self-tightening suture loop; 3, self-tightening suture loop.

Download (181KB)
7. Fig. 6. Insertion of the self-tightening suture loop through the tibial tunnel. БК, femur; ББК, tibia; 1, an intra-articular plate positioned over the tibial eminence fragment; 2, self-tightening suture loop emerging from the tibial tunnel.

Download (77KB)
8. Fig. 7. A second plate affixed externally as a component of the suture loop system. БК, femur; ББК, tibia; 1, intra-articular plate positioned over the tibial eminence fragment; 2, extra-articular plate attached to the suture loop.

Download (78KB)
9. Fig. 8. Image of the implant (self-tightening suture loop between two plates). 1, self-tightening suture loop; 2, intra-articular plate affixed to the self-tightening suture loop; 3, extra-articular plate.

Download (222KB)
10. Fig. 9. Final fixation employing the self-tightening suture loop and two extra-articular plates. БК, femur; ББК, tibia; 1, intra-articular plate placed over the tibial eminence fragment; 2, extra-articular plate; 3, free ends for tightening the suture loop.

Download (70KB)
11. Fig. 10. Reduced and fixed tibial eminence fracture as seen on arthroscopy. 1, fixed TIE fragment; 2, intra-articular plate; 3, anterior cruciate ligament.

Download (83KB)

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.