Rate and structure of complications in spine surgery

Cover Page


Cite item

Abstract

The risk of intraoperative and postoperative complications after spinal surgery still remains in the hospital-acquired conditions of any hospital. The methods for performing spinal surgery in children and adults are developing and constantly improving. A significant number of constructions for performing spinal surgery are created by leading manufacturers. The frequency of local and systemic surgical complications has not decreased. Knowing the rate and structure spinal surgery complications can expand the ability to predict and prevent them, which is important for medical science and practice. The presented review of literature addressed the current state of knowledge on spinal surgery complications.

Full Text

According to some authors, among the causes of disability orthopedic and traumatological pathology is second only to cardiovascular disease [1-3].

Degenerative and dystrophic spine diseases (DDSD) firmly hold the first and second places in adults, comprising 40% of all orthopedic illnesses, whereas among the elderly and senile patients, these are observed in 95%–98% of all observations [4]. In addition, it was noted that in the older age groups, surgeries performed for spinal stenosis are in the first place among the interventions performed for diseases and deformities of the dorsal spine [5].

In the working population, DDSD can cause complete loss of labor capacity [6-8]. In the USA, approximately 0.2% of the total population, including newborns, has a spinal curvature of over 30°, which acts as an indication for surgical treatment [9].

Surgery for spinal deformities represents the most complex procedures in orthopedics. Currently, the population of the Russian Federation is approximately 150 million [9]. Significant number of patients requires specialized spinal surgery. In the USA (with a population of approximately 300 million), approximately 500,000 need surgical treatment for spinal diseases. Extrapolating these figures to the Russian population, there may be 250,000 patients who require spinal surgery [9]. Compared to approximately 4,000 vertebrologists in the USA, the Russian Federation has are no more than 30 such specialists [10].

It is also widely recognized that surgical treatment is the most optimal treatment for spinal pathology because of poor responsiveness to conservative treatment. For the same reason, in the available literature, there are only few publications relating to complications in spinal surgeries, whereas there is sufficient information available from Western Europe, the USA, and Southeast Asia.

In the Russian Federation, surgical interventions for correcting spinal deformities have become more common since the beginning of the 21st century. During this period, the national project “Health” was actively implemented. Accordingly, the Government of the Russian Federation had planned, developed, and implemented appropriate targeted programs supported with funding from both federal and regional budgets and territorial funds of compulsory health insurance [11, 12]. This facilitated an annual increase in the number of surgical interventions aimed at correcting spinal deformities. Tens of thousands of patients throughout the country received high-tech medical care.

In Russia, more than one million people seek medical care every year for intense back pain syndrome [13]. The financial costs for treating patients requiring surgical correction of the spine amount to billions of dollars in the developed countries, such as Western Europe, the USA, and Japan). Annually, approximately 90 billion US dollars is spent on the diagnosis and treatment of patients with spinal diseases, and the economic losses because of the decline in labor productivity amount to approximately 20 billion US dollars [14].

In recent years, there has been a steady increase in surgical interventions for correcting spinal deformities [15]. In the USA, from 2000 to 2009, surgical procedures performed for DDSD increased by more than 1/3rd and has been growing both because of rapid increase in the elderly population and adoption of broader indications for surgical treatment [13].

Currently, there are no accurate statistical data for Russia in the literature. To date, data on the number of surgical interventions performed for spinal deformities have been difficult to obtain because national registries on spinal surgery are not maintained in all countries. However, there is information from the USA, where more than 300,000 surgical interventions are annually performed for spondylosyndesis [16].

Currently, a high-level technique for surgical interventions on the spine has been developed. Leading manufacturers, mainly from the USA and Western Europe, have created a significant number of designs for spinal surgeries. However, the frequency of surgical complications after similar surgeries has not demonstrated a steady decrease [17-22]. The frequency of various complications in spinal surgery remains quite high—9%–33% [9, 19, 23, 24]. Complications after surgical interventions on the spine are encountered more often in adults than in children [7, 25, 26]. The incidence of complications is higher in smokers and in patients with a high body mass index or diabetes mellitus along with several other precipitating factors [27-31].

The volume of blood loss during spinal surgeries depends on several factors, including the duration of surgery, state of bone mineral density, and extent of the zone of spondylosyndesis. During the surgical correction of idiopathic scoliosis, the average volume of blood loss amounts to 20%–40% of the circulating blood volume (CBV) [32].

Some researchers believe that neuromuscular forms of scoliosis are the most unfavorable in terms of intraoperative blood loss, which is explained by the considerable extent of the zone of spondylosyndesis [33]. Surgical treatment of neuromuscular scoliosis is accompanied by an average blood loss of approximately 50% of the CBV, but cases with loss of more than 90% of the CBV have also been described [34].

During surgical interventions on the spine, several authors have identified provoking factors affecting the volume of blood loss; these include the type of anesthetic support, use of muscle relaxants, increase in intra-abdominal pressure, and nature of hemodynamics [35, 36].

Fatal outcomes after surgical interventions on the spine may result from acute coronary insufficiency, pulmonary embolism, pneumonia, and sepsis. The frequency of fatal outcomes in surgical interventions on the spine varies from 0.1% to 2.0% [18, 37-40]. The primary causes for fatal outcomes in young and middle-aged patients with spinal deformities are cardiovascular and respiratory insufficiencies [9, 24].

The risk of complications during and after surgical intervention is higher in older age groups because of the presence of a concomitant pathology that causes low functional reserves in them. Diseases such as arterial hypertension, diabetes mellitus, chronic pyelonephritis, and rheumatoid arthritis are present, on an average, in 55% of the elderly and senile patients [41].

On an average, complications after surgical interventions on the spine occur in more than 50% of the patients aged ≥75 years; these complications include surgical site infection (SSI, 10.5%), urinary tract infection (10%), postoperative pneumonia (8%), pulmonary embolism (2.6%), and acute myocardial infarction (2.5%). In the elderly and senile patients, complications include acute urinary retention (12.5%), intestinal obstruction (5.3%), acute renal failure (2.6%), superficial wound infection (2.6%), and postoperative delusions (17.5%) [18, 41].

Cardiovascular complications in spinal surgery are observed both during the intervention and early postoperative period [17]. Several factors affect cardiac activity, including pre-existing coronary artery disease, different types of arrhythmias, left ventricular hypertrophy and dysfunction, and valvular heart disease.

Cardiovascular complications during the early postoperative period occur in 1.7%–4.5% of the cases [38, 42].

During spinal surgeries, postoperative deep vein thromboses of the lower limbs are observed in 1.8%–6.7% of the cases [43, 44]. To prevent thromboembolic complications, ultrasound dopplerography of the lower limbs, compression knitwear, patient positioning without abdominal compression during surgery, anticoagulant administration, and early activation in the postoperative period are recommended [9].

Statistical data on the number of pulmonary complications after spinal surgeries widely vary from 1.8% to 64% [45, 46]. This may be because of differences in the interpretation of respiratory complications by different investigators. For example, Jules-Elysee et al. (2004) considered changes revealed by radiographic examination of lungs as pulmonary complications even in the absence of clinical signs [45]. According to these authors, the number of cases of respiratory complications reaches 64%. Karadimas et al. (2008) considered it appropriate to classify pneumonia (1.8%) as a pulmonary complication [38]. Other authors consider complications such as pulmonary edema, pneumonia, and atelectases as respiratory [18, 42]. In these studies, incidences of pulmonary complications after spinal surgeries ranged from 1.8% to 23%.

Risk factors for the development of pulmonary complications are considered to be smoking, prescription of muscle relaxants during anesthesia, and intraoperative damage to the pleura and lung tissue [47, 48]. After the surgical correction of spinal deformities, respiratory functions improve in most cases.

The incidence of neurological complications after spinal surgery is relatively small (0.5%–2.0%) with severe lesions involving impaired pelvic function, complete damage to the spinal cord, and paraplegia around 0.07%–0.3% [37]; some authors [49] have considered these as major neurological complications, whereas the transient impairment of motor and sensory functions has been considered as minor [50].

Reames et al. (2011) reported 19,260 surgical interventions for scoliosis in pediatric practice [40]. The incidence of neurologic complications was 0.8%. Another study reported data on 108,419 spinal surgeries in adult patients, during which 1,064 neurological complications (1%) were observed [39]. According to these investigators, the incidence of fatal outcomes was 0.18%.

The results of spinal surgeries are assessed based on the presence or absence of postoperative complications; there are methods for evaluating functional results and quality of life [51-53].

Increased surgical treatments for spinal pathology have increased the number of complications associated with this surgery. Most often (up to 12%), infectious complications such as infected hematoma, superficial suppuration, marginal necrosis of the wound, intermuscular and paravertebral phlegmons and abscesses, and osteomyelitis are noted; non-infectious complications such as instability of the metal implant, debris syndrome, osteolysis, and metallosis are also noted [18, 54, 55].

One of the most common, unfavorable complications of spinal surgery is SSI. Cases of local purulent-inflammatory complications significantly worsen the outcomes of treatment and increases its duration and cost [56-58]. The frequency of SSI in spinal surgeries is 0.7%–20.0% [19, 31, 59-62]. Deep SSI occurs less frequently than superficial SSI and amounts to 0.5%–3.5% [27, 63-65].

Early complications are those that develop within 1 month after the surgery, whereas late complications are those that develop more than 1 month after the surgery [9].

During spinal surgery, local non-infectious complications such as pseudarthrosis, instability or fracture of the metal implant, protrusion of the implant under the skin, kyphotic deformity above the fixation level, and degenerative changes in the lower pole are often noted [24, 55].

Bonnevialle et al. (2012) consider SSI to be unsuccessful and disputable and recommend the combination of all local complications (both infectious and non-infectious), not related to bacterial contamination, into a broad category of wound healing problems [66].

After spinal surgeries, hematomas are observed in 0.8%–5.6% of the cases; several researchers consider this complication after surgical intervention as a precursor of suppurative complications [44].

Thus, data on the incidence and structure of complications in spinal surgery presented in the literature are ambiguous. In Russia and abroad, new surgical methods and modern types of anesthetic and resuscitation supports have been developed and the number of surgical interventions on the spine has been constantly increasing. In the Russian Federation, an effective legal framework was created (within the framework of the priority national project “Health” and modernization of health care), which provided a real opportunity to increase the availability and quality of high-tech, expensive medical care to the population [67, 68]. However, complications are encountered in every unit that deals with spinal surgery.

Analysis of data from literature reveals that complications after spinal surgery have attracted the interest of several researchers. There is a wide spectrum of these complications, their causes are varied, and they undoubtedly affect the functional status and quality of life of patients. The prognosis of complications in spinal surgeries is possible, which depends on the experience of vertebrologists in most cases.

In general, when analyzing data of domestic and foreign literature, it is obvious that the incidence of complications in spinal surgeries remains quite high without a steady tendency to decrease in any country [19, 59, 69]. Prevention of these complications is possible by creating systems for their prognosis and prevention. However, there have been only few publications that have provided such data on spinal surgery [54, 70, 71].

Funding and conflict of interest

The authors have no conflicts of interest.

There was no financing.

×

About the authors

Evgeny M. Fadeev

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: emfadeev@mail.ru

MD, PhD, assistent Department of Traumotology and Orthopedic

Russian Federation, Saint Petersburg

Valery M. Haydarov

 North-Western State Medical University named after I.I. Mechnikov

Email: valera_1991_91@mail.ru

senior laboratory assistant of the Department of Traumotology and Orthopedic, Field Surgery

Russian Federation, Saint Petersburg

Sergey V. Vissarionov

The Turner Scientific Research Institute for Children’s Orthopedic; North-Western State Medical University named after I.I. Mechnikov

Email: turner01@mail.ru

MD, PhD, professor, Deputy Director for Research and Academic Affirs, head of the department of spinal pathology and neurosurgery; Professor of the chair of pediatric traumatology
and orthopedics

Russian Federation, Saint Petersburg

Stanislav A. Linnik

North-Western State Medical University named after I.I. Mechnikov

Email: stanislavlinnik@mail.ru

MD, PhD, Professor Department of Traumotology and Orthopedic, Field Surgery

Russian Federation, Saint Petersburg

Aleksandr N. Tkachenko

North-Western State Medical University named after I.I. Mechnikov

Email: altkachenko@mail.ru

MD, PhD, Professor Department of Traumotology and Orthopedic, Field Surgery

Russian Federation, Saint Petersburg

Vadim V. Usikov

North-Western State Medical University named after I.I. Mechnikov

Email: doctore@list.ru

MD, PhD, assistent of the Department of Traumotology and Orthopedic, Field Surgery

Russian Federation, Saint Petersburg

Djalolidin S. Mansurov

North-Western State Medical University named after I.I. Mechnikov

Email: jalolmedic511@gmail.com

MD, PhD student of the Department of Traumotology and Orthopedic, Field Surgery

Russian Federation, Saint Petersburg

Оmar F. Nur

North-Western State Medical University named after I.I. Mechnikov

Email: omarn2658@gmail.com

MD, PhD student of the Department of Traumotology and Orthopedic, Field Surgery

Russian Federation, Saint Petersburg

References

  1. Миронов С.П., Еськин Н.А., Очкуренко А.А., и др. Состояние травматолого-ортопедической помощи населению России // Х юбил. Всерос. съезд травматологов-ортопедов. – М.: Человек и здоровье, 2014. – С. 3. (Электрон. изд.). [Mironov SP, Es’kin NA, Ochkurenko AA, et al. Sostoyanie travmatologo-ortopedicheskoi pomoshchi naseleniyu Rossii. X yubil. Vseros. s'ezd travma-tologov-ortopedov. Moscow: Chelovek i zdorov’e, 2014: 3 р. (In Russ.)].
  2. Ulrich SD, Thorsten M, Bennett D, et al. Total hip arthroplasties: What are the reasons for revision? Mont Int Orthop. 2008;35(5):597-604. doi: 10.1007/s00264-007-0364-3.
  3. Zi-Sheng, You-Shui G, Zhi-Zhen J, et al. Hemiarthroplasty vs primary total hip arthroplasty for displaced fractures of the femoral neck in the elderly. A meta-analysis. J Arthroplasty. 2012;27(4):583-590. doi: 10.1016/j.arth.2011.07.009.
  4. Фомичев Н.Г., Садовой М.А. Вертебрология Российской Федерации: проблемы и пути улучшения организации специализированной помощи // Хирургия позвоночника. – 2004. – № 1. – С. 25–32. [Fomichev NG, Sadovoi MA. Vertebrologiya Rossiiskoi Federatsii: problemy i puti uluchsheniya organizatsii spetsializirovannoi pomoshchi. Khirurgiya pozvonochnika. 2004;(1):25-32. (In Russ.)].
  5. Anandjiwala J, Seo JY, Ha KY, et al. Adjacent segment degeneration after instrumented posterolateral lumbar fusion: a prospective cohort study with a minimum five-year follow-up. Eur Spine J. 2011;11(9):913. doi: 10.1016/j.spinee.2011.08.439.
  6. Заборовский Н.С., Пташников Д.А., Михайлов Д.А. и др. Влияние коррекции деформации позвоночника на качество жизни пожилых пациентов // Вопр. нейрохирургии им. Н.Н. Бурденко. – 2016. – Т. 80. – № 3. – С. 58–65. [Zaborovskii NS, Ptashnikov DA, Mikhailov DA, et al. Vliyanie korrektsii defor-matsii pozvonochnika na kachestvo zhizni pozhilykh patsientov. Vopr neirokhirurgii im. N.N. Burdenko. 2016;80(3):58-65. (In Russ.)].
  7. Lee SE, Kim KT, Park YS, Kim YB. Association between asymptomatic urinary tract infection and postoperative spine infection in elderly women: a retrospective analysis study. J Korean Neurosurg Society. 2010;47(4):265-270. doi: 10.3340/jkns.2010.47.4.265.
  8. Mears SC, Edwards PK. Bone and joint infections in older adults. Clin Geriatr Med. 2016;32(3):555-570. doi: 10.1016/j.cger.2016.02.003.
  9. Колесов С.В. Хирургия деформаций позвоночника / Под ред. акад. РАН и РАМН С.П. Миронова. – М.: Авторская Академия, 2014. – 272 с. [Kolesov SV. Khirurgiya deformatsii pozvonochnika. Ed by S.P. Mironova. Moscow: Avtorskaya Akademiya; 2014. 272 p. (In Russ.)].
  10. Власова Н.В., Джанаева Н.Г., Елизаров В.В., и др. Демография и социально-экономические проблемы народонаселения. Вып. 16 / Центр по изучению проблем народонаселения экономического факультета МГУ им. М.В.Ломоносова. – М.: Экономический факультет МГУ им. М.В.Ломоносова, 2016. – 176 с. [Vlasova NV, Dzhanaeva NG, Elizarov VV, et al. Demografiya i sotsial’no-ekonomicheskie problemy narodonaseleniya. Vyp. 16. Tsentr po izucheniyu problem narodo-naseleniya ekonomicheskogo fakul’teta MGU im. M.V. Lomonosova. Moscow. Ekonomicheskii fakul’tet MGU im. M.V. Lomonosova. 2016; 176 p. (In Russ.)].
  11. Приказ Минздравсоцразвития РФ № 201н, 31.03.2010. «Об утверждении порядка оказания медицинской помощи населению при травмах и заболеваниях костно-мышечной системы» // Рос. газета. – 2010. – 12 мая. – № 100. [Prikaz Minzdravsotsrazvitiya RF No 201n, 31.03.2010. “Ob utverzhdenii poryadka oka-zaniya meditsinskoi pomoshchi naseleniyu pri travmakh i zabolevaniyakh kostno-myshechnoi sistemy”. Ros. gazeta. 2010; 100. (In Russ.)].
  12. Приказ МЗ РФ от 29.12.2014 г. № 930н «Об утверждении Порядка организации оказания высокотехнологичной медицинской помощи» // Рос. газета. – 2015. – 21 января. – № 9 (6580). [Prikaz MZ RF ot 29.12.2014. No 930n “Ob utverzhdenii Poryadka organizatsii okaza-niya vysokotekhnologichnoi meditsinskoi pomoshchi”. Ros. gazeta. 2015; No 9 (6580). (In Russ.)].
  13. Казьмин А.И. Хирургическое лечение дегенеративных заболеваний пояснично-крестцового отдела позвоночника с применением стержней из нитинола: автореф. дис. … канд. мед. наук: 14.01.15. М., 2016. – 26 с. [Kaz’min AI. Khirurgicheskoe lechenie degenerativnykh zabolevanii poyasnichno-kresttsovogo otdela pozvonochnika s primeneniem sterzhnei iz nitinola [dissertation]. Moscow; 2016. 26 p. (In Russ)].
  14. Parker SL, Xu R, McGirt MJ, et al. Long-term back pain after a single-level discectomy for radiculopathy: incidence and health care cost analysis. J Neurosurg Spine. 2010;12(2):178-182. doi: 10.1016/j.spinee.2010.10.008.
  15. Dubory A, Giorgi H, Walter A, et al. Surgical-site infection in spinal injury: incidence and risk factors in a prospective cohort of 518 patients. Eur Spine J. 2015;24(3):543-554. doi: 10.1007/s00586-014-3523-4.
  16. Kaner T, Sasani M, Oktenoglu T, et al. Dynamic stabilization of the spine: a new classification system. Turkish Neurosurg. 2010;20(2):205-215. doi: 10.5137/1019-5149.JTN.2358-09.2.
  17. Рябых С.О. Хирургическое лечение деформаций позвоночника высокого риска: автореф. дис. … д-ра мед. наук: 14.01.15. – Курган, 2014. – 48 с. [Ryabykh SO. Khirurgicheskoe lechenie deformatsii pozvonochnika vysokogo riska [dissertation]. Kurgan, 2014. 48 p. (In Russ.)].
  18. Прудникова О.Г. Хирургия деформаций позвоночника у взрослых: актуальные проблемы и подходы к лечению // Гений ортопедии. – 2015. – № 4. – С. 94-102. [Prudnikova OG. Surgery of the spine deformities in adults: relevant problems and approaches to treatment (A review of literature). Genii ortopedii. 2015;(4):94-102. (In Russ.)]. doi: 10.18019/1028-4427-2015-4-94-102.
  19. Долотин Д.Н., Михайловский М.В. Ранняя инфекция в хирургии идиопатического сколиоза // Хирургия позвоночника. – 2016. – Т. 13. – № 2. – С. 24–27. [Dolotin DN, Mikhailovskii MV. Rannyaya infektsiya v khirurgii idiopaticheskogo skolioza. Khirurgiya pozvonochnika. 2016;13(2):24-27. (In Russ)]. doi: 10.14531/ss2016.2.24-27.
  20. Schuster JM, Rechtine G, Norvell DC, Dettori JR. The influence of perioperative risk factors and therapeutic interventions on infection rates after spine surgery: a systematic review. Spine. 2010;35(9S):S125-S137. doi: 10.1097/brs.0b013e3181d8342c.
  21. Woods BI, Rosario BL, Chen A, et al. The association between perioperative allogeneic transfusion volume and postoperative infection in patients following lumbar spine surgery. J Bone Joint Surg Am. 2013;95(23):2105-2110. doi: 10.2106/JBJS.L.00979.
  22. Saeedinia S, Nouri M, Azarhomayoun A, et al. The incidence and risk factors for surgical site infection after clean spinal operations: A prospective cohort study and review of the literature. Surg Neurol Int. 2015;6(1):154. doi: 10.4103/2152-7806.166194.
  23. Jiang J, Teng Y, Fan Z, et al. Does Obesity Affect the Surgical Outcome and Complication Rates of Spinal Surgery? A Meta-analysis. Clin Orthop Relat Res. 2014;472(3):968-975. doi: 10.1007/s11999-013-3346-3.
  24. Samdan AF, Belin EJ, Bennett JT, et al. Major perioperative complications after spine surgery in patients with cerebral palsy: assessment of risk factors. Eur Spine J. 2016;25(3):795-800. doi: 10.1007/s00586-015-4054-3.
  25. Казарян И.В., Виссарионов С.В., Разоренова Т.С., Ларионова В.И. Прогнозирование характера течения врожденной деформации позвоночника у детей // Хирургия позвоночника. – 2013. – Т. 10. – № 4. – С. 23-29. [Kazaryan IV, Vissarionov SV, Razorenova TS, Larionova VI. Prognozirovanie kharaktera techeniya vrozhdennoi deformatsii pozvonochnika u detei. Khirurgiya pozvonochnika. 2013;10(4):23-29. (In Russ.)]. doi: 10.14531/ss2014.3.38-44.
  26. Mehta AI, Babu RB, Karikari IO, et al. Young investigator award winner: the distribution of body mass as a significant risk factor for lumbar spinal fusion postoperative infections. Spine. 2012;37(19):1652-1656. doi: 10.1097/brs.0b013e318241b186.
  27. Schimmel JJP, Horsting PP, Kleuver M, et al. Risk factors for deep surgical site infections after spinal fusion. Eur Spine J. 2010;19(10):1711-1719. doi: 10.1007/s00586-010-1421-y.
  28. Abdallah DY, Jadaan MM, McCab JP. Body mass index and risk of surgical site infection following spine surgery: a meta-analysis. Eur Spine J. 2013;22(12):2800-2809. doi: 10.1016/j.spinee.2014.02.009.
  29. Durand F, Berthelot P, Cazorla C, et al. Smoking is a risk factor of organ/space surgical site infection in orthopaedic surgery with implant materials. Int Orthop. 2013;37(4):723-727. doi: 10.1007/s00264-013-1814-8.
  30. Hernigou J, Schuind F. Smoking as a predictor of negative outcome in diaphyseal fracture healing. Int Orthop. 2013;37(5):883-887. doi: 10.1007/s00264-013-1809-5.
  31. Sebastian A, Huddleston P, Kakar S, et al. Risk factors for surgical site infection after posterior cervical spine surgery: an analysis of 5,441 patients from the ACS NSQIP 2005–2012. Spine J. 2016;16(4):504-509. doi: 10.1016/j.spinee.2015.12.009.
  32. Лебедева М.Н., Агеенко А.М., Иванова А.А., Голиков Р.И. Пути уменьшения кровопотери в хирургии позвоночника // Междунар. журн. прикладных и фундаментальных исследований. – 2015. – № 11–5. – С. 655–658. [Lebedeva MN, Ageenko AM, Ivanova AA, Golikov RI. Puti umen’sheniya krovo-poteri v khirurgii pozvonochnika. Mezhdunar. zhurn. prikladnykh i fundamental’nykh issledovanii. 2015;11(5):655-658. (In Russ.)].
  33. Sarwark J, Sarwahi V. New strategies and decision making in the management of neuromuscular scoliosis. J Orthop Clin North Am. 2007;38(4):485-496. doi: 10.1016/j.ocl.2007.07.001.
  34. Захарин Р.Г., Бернакевич А.И., Кулешов А.А., и др. Массивная кровопотеря при хирургии сколиоза // Тез. докл. междунар. симпозиума «Адаптация различных систем организма при сколиотической деформации позвоночника. Методы лечения». – М.: Б.и., 2003. – С. 28–30. [Zakharin RG, Bernakevich AI, Kuleshov AA, et al. Massivnaya krovopoterya pri khi-rurgii skolioza. Tez. dokl. mezhdunar. simpoziuma “Adaptatsiya razlichnykh sistem organiz-ma pri skolioticheskoi deformatsii pozvonochnika. Metody lecheniya”. Moscow. B.i. 2003; P. 28-30. (In Russ)].
  35. Айзенберг В.Л., Уколов К.Ю., Диордиев А.В. Методы анестезии при оперативном лечении сколиоза у детей // Анестезиология и реаниматология. – 2010. – № 1. – С. 57–60. [Aizenberg VL, Ukolov KYu, Diordiev AV. Metody anestezii pri operativnom lechenii skolioza u detei. Anesteziologiya i reanimatologiya. 2010;(1):57-60. (In Russ.)].
  36. Spiteri M, Spina A, Paris S, et al. Evaluation of the effect of muscle relaxants on blood loss in corrective surgery for scoliosis. Eur Spine J. 2011;20(4):426.
  37. Удалова И.Г., Михайловский М.В. Неврологические осложнения в хирургии сколиоза // Хирургия позвоночника. – 2013. – № 3. – С. 38–43. [Udalova IG, Mikhailovskii MV. Nevrologicheskie oslozhneniya v khirurgii skolioza. Khirurgiya pozvonochnika. 2013;3:38-43. (In Russ)]. doi: 10.14531/ss2013.3.38-43.
  38. Karadimas EJBC, Bunger C, Lindblad BE, et al. Spondylodiscitis. A retrospective study of 163 patients. Acta Orthop. 2008;79(5):650-659. doi: 10.1080/17453670810016678.
  39. Hamilton DK, Smith JS, Sansur CA, et al. Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of Scoliosis Research Society Morbidity and Mortality Committee. Spine. 2011;36(15):1218-1228. doi: 10.1097/brs.0b013e3181ec5fd9.
  40. Reames DL, Smith JS, Fu KM, et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine. 2011;36(18):1484-1491. doi: 10.1097/brs.0b013e3181f3a326.
  41. Jong H, Kyu K, Wang L. Complications and outcomes of surgery for degenerative lumbar deformity in elderly patients. Orthop Res Reviews. 2014;6:11-15. doi: 10.2147/ORR.S40470.
  42. Nasse R, Yadla S, Maltenfo MG, et al. Complications in spine surgery. A review. Neurosurg. Spine. 2010;13(2):144-157. doi: 10.3171/2010.3.spine09369.
  43. Kim HJ, Walcott-Sapp S, Adler R. Thromboembolic complications following spine surgery assessed with spiral CT scans: DVT/PE following spine surgery. HSS J. 2011;7(1):37-40. doi: 10.1007/s11420-010-9179-7.
  44. Al-Dujaili TM, Majer CN, Madhoun TE, et al. Deep Venous thrombosis in spine surgery patients: incidence and hematoma formation. Int. surg. 2012;97(2):150-154. doi: 10.9738/CC71.1.
  45. Jules-Elysee K, Urban MK, Urquhart BL, et al. Pulmonary complications in anterior-posterior thoracic lumbar fusions. Spine J. 2004;4(3):312-316. doi: 10.1016/j.spinee.2003.11.008.
  46. Pateder DB, Gonzales RA, Kebaish KM, et al. Pulmonary embolism after adult spinal deformity surgery. Spine. 2008;33(3):301-305. doi: 10.1097/brs.0b013e31816245e1.
  47. Cloyd JM, Acosta FL, Ames CP. Effect of age on the perioperative and radiographic complications of multilevel cervicothoracic spinal fusions. Spine. 2008;33(26):E977-E982. doi: 10.1097/brs.0b013e31818e2ad7.
  48. Ezhevskaya АА, Prusakova ZhB, Zagrekov VI, et al. The advantages of continuous epidural anesthesia in spinal deformity surgery. Clin Med. 2014;6(3):72-76.
  49. Good CR, Bridwell KH, O’Leary PT, et al. Major perioperative neurologic deficits in pediatric and adult spine surgery patients: incidence, etiology and outcomes over a 14 year period at one institution. Spine J. 2008;8(5):12S-13S. doi: 10.1016/j.spinee.2008.06.029.
  50. Master DL, Son-Hing JP, Poe-Kochert C, et al. Risk factors for major complications after surgery for neuromuscular scoliosis. Spine. 2011;36(7):564-571. doi: 10.1097/brs.0b013e3181e193e9.
  51. Булатов А.В., Крутько А.В., Козлов Д.М. Минимально инвазивные декомпрессивно-стабилизирующие вмешательства в хирургическом лечении рецидивов болевых синдромов после операций на поясничном отделе позвоночника // Перспективы развития вертебрологии: инновационные технологии в лечении повреждений и заболеваний позвоночника и спинного мозга: Материалы IV съезда Межрегион. общественной организации «Ассоциация хирургов-вертебрологов» с междунар. участием [Эл. ресурс]. Новосибирск, 2013. spinesurgery.ru›files/conference/ tezis_2013.pdf.С.27-31. [Bulatov AV, Krut’ko AV, Kozlov DM. Minimal’no-invazivnye dekompressivno-stabiliziruyushchie vmeshatel’stva v khirurgicheskom lechenii retsidivov bolevykh sindromov posle operatsii na poyasnichnom otdele pozvonochnika. Perspektivy razvitiya vertebrolo-gii: innovatsionnye tekhnologii v lechenii povrezhdenii i zabolevanii pozvonochnika i spinnogo mozga : Materialy IV s'ezda Mezhregion. obshchestvennoi organizatsii “Asso-tsiatsiya khirurgov-vertebrologov” s mezhdunar. uchastiem (conference proceedings) [El. resurs]. Novosibirsk. 2013. spinesurgery.ru›files/conference/tezis_2013.pdf.p.27-31. (In Russ.)].
  52. Юндин С.В., Юндин В.И., Мезин А.Н. Реконструктивно-стабилизирующие операции в позднем периоде позвоночно-спинномозговой травмы // Перспективы развития вертебрологии: инновационные технологии в лечении повреждений и заболеваний позвоночника и спинного мозга : Материалы IV съезда Межрегион. общественной организации «Ассоциация хирургов-вертебрологов» с междунар. участием [Эл. ресурс]. Новосибирск, 2013. spinesurgery.ru›files/conference/tezis_2013.pdf. С. 190. [Yundin SV, Yundin VI, Mezin AN. Rekonstruktivno-stabiliziruyushchie operatsii v pozdnem periode pozvonochno-spinnomozgovoi travmy. Perspektivy razvitiya vertebro-logii: innovatsionnye tekhnologii v lechenii povrezhdenii i zabolevanii pozvonochnika i spinnogo mozga: Materialy IV s'ezda Mezhregion. obshchestvennoi organizatsii “Asso-tsiatsiya khirurgov-vertebrologov” s mezhdunar. uchastiem (conference proceedings) [El. resurs]. Novosibirsk; 2013. spinesurgery.ru›files/conference/tezis_2013.pdf. P. 190. (In Russ.)].
  53. International classification of functioning, disability and health, short version. World Health Organization, Geneva. 2001. 137 p. doi: 10.1055/s-2001-19074.
  54. Gruskay J, Kepler C, Smith J, et al. Is surgical case order associated with increased infection rate after spine surgery? Spine. 2012;37(13):1170-1174. doi: 10.1097/brs.0b013e3182407859.
  55. Skovrlj B, Cho SK, Caridi JM, et al. Association between surgeon experience and complication rates in adult scoliosis surgery. Spine. 2015;40(15):1200-1205. doi: 10.1097/brs.0000000000000993.
  56. Lee BY, Wiringa АЕ, Bailey RR, et al. Staphylococcus aureus vaccine for orthopedic patients: An economic model and analysis. Vaccine. 2010;28(12):2465-2471. doi: 10.1016/j.vaccine.2009.12.075.
  57. Parchi PD, Evangelisti G, Andreani L, et al. Postoperative Spine Infections. Orthop Rev. 2015;7(3):5900:63-67. doi: 10.4081/or.2015.5900.
  58. Pawar AY, Biswas SK. Postoperative spine infections. Asian Spine J. 2016;10(1):176-183. doi: 10.4184/asj.2016.10.1.176.
  59. Cizik A, Lee M, Martin B, et al. Using the spine surgical invasiveness index to identify risk of surgical site infection: a multivariate analysis. J Bone Joint Surg Am. 2012;94(4):335-342. doi: 10.2106/jbjs.j.01084.
  60. Gerometta A, Olaverri JCR, Bitan F. Infections in spinal instrumentation. Int Orthop. (SICOT). 2012;36(2):457-464. doi: 10.1007/s00264-011-1426-0.
  61. Satake K, Kanemura T, Matsumoto A, et al. Predisposing factors for surgical site infection of spinal instrumentation surgery for diabetes patients. Eur Spine J. 2013;22(8):1854-1858. doi: 10.1007/s00586-013-2783-8.
  62. Tirrell S, Handa S. Spinal infections: vertebral osteomyelitis, epidural abscess, diskitis. Hosp Med Clinic. 2013;2(4):e509-e524. doi: 10.1016/j.ehmc.2013.04.010.
  63. Pull ter Gunne AF, van Laarhoven CJHM, Cohen DB. Incidence of surgical site infection following adult spinal deformity surgery: an analysis of patient risk. Eur Spine J. 2010;19(6):982-988. doi: 10.1007/s00586-009-1269-1.
  64. Molinari RW, Khera OA, Molinari WJ. Prophylactic intraoperative powdered vancomycin and postoperative deep spinal wound infection: 1,512 consecutive surgical cases over a 6-year period. Eur Spine J. 2012;21(4):S476–S482. doi: 10.1007/s00586-011-2104-z.
  65. Ogihara S, Yamazaki T, Maruyama T, et al. Prospective multicenter surveillance and risk factor analysis of deep surgical site infection after posterior thoracic and/or lumbar spinal surgery in adults. J Orthopaedic Science. 2015;20(1):71-77. doi: 10.1007/s00776-014-0669-1.
  66. Bonnevialle P, Bonnomet F, Philippe R, et al. Early surgical site infection in adult appendicular skeleton trauma surgery: A multicenter prospective series. Orthop Traumatol: Surg Res. 2012;98(6):684-689. doi: 10.1016/j.otsr.2012.08.002.
  67. Голикова Т.А. О порядке формирования и утверждения государственного задания на оказание в 2011 году высокотехнологичной медицинской помощи гражданам Российской Федерации за счет бюджетных ассигнований федерального бюджета: приказ Минздравсоцразвития России № 1248н, 31.12.2010 // Рос. газета. – 2011. – 25 февраля. – № 40. [Golikova TA. O poryadke formirovaniya i utverzhdeniya gosudarstvennogo zadaniya na okazanie v 2011godu vysokotekhnologichnoi meditsinskoi pomoshchi grazhdanam Rossiiskoi Federatsii za schet byudzhetnykh assignovanii federal’nogo byudzheta: prikaz Min-zdravsotsrazvitiya Rossii No 1248n, 31.12.2010. Ros. gazeta. 2011;40. (In Russ.)].
  68. Скворцова В.И. Порядок оказания медицинской помощи по профилю «Пластическая хирургия». Приказ МЗ РФ от 30.10.2012 № 55н // Вопр. реконструктив. и пластич. хирургии. – 2013. – № 2. – С. 65–72. [Skvortsova VI. Poryadok okazaniya meditsinskoi pomoshchi po profilyu “Plasticheskaya khirurgiya”Prikaz MZ RF ot 30.10.2012 No 55n. Vopr. rekonstruktiv. i plastich. khirurgii. 2013;2:65-72. (In Russ.)].
  69. Chikawa T, Sakai T, Bhatia NN, et al. Retrospective study of deep surgical site infections following spinal surgery and the effectiveness of continuous irrigation. Br J Neurosurg. 2011;25(5):621-624. doi: 10.3109/02688697.2010.546902.
  70. Núñez-Pereira S, Pellisé F, Rodríguez-Pardo D, et al. Individualized antibiotic prophylaxis reduces surgical site infections by gram-negative bacteria in instrumented spinal surgery. Eur Spine J. 2011;20(3):397-402. doi: 10.1007/s00586-011-1906-3.
  71. Tomov M, Mitsunaga L, Durbin-Johnson B, et al. Reducing surgical site infection in spinal surgery with Betadine irrigation and intra-wound Vancomycin powder. Spine. 2015;40(7):491-499. doi: 10.1097/brs.0000000000000789.
  72. Виссарионов С.В., Кокушин Д.Н., Рерих В.В., и др. Ошибки диагностики и хирургического лечения детей с повреждениями позвоночника и спинного мозга // Хирургия позвоночника. – 2014. – № 4. – С. 8–14. [Vissarionov SV, Kokushin DN, Rerih VV, et al. Mistakes in diagnosis and surgical treatment of children with injuries of the spine and spinal cord. Khirurgiya pozvonochnika. 2014;(4):8-14. (In Russ.)].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Fadeev E.M., Haydarov V.M., Vissarionov S.V., Linnik S.A., Tkachenko A.N., Usikov V.V., Mansurov D.S., Nur О.F.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies