脑瘫引起脊柱侧弯儿童体重、身体质量指数问题的现代观点:系统综述

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证:许多作者认为,体重及其变化和身体质量指是小儿脑瘫脊柱侧弯矫治术后并发症的危险因素之一。然而,对于脑瘫患儿这一指标的分析,目前还没有一个明确的方法。

目的分析当前文献中脑瘫导致脊柱侧弯患儿的体重和身体质量指数的数据。

材料与方法。在PubMed、Web of Science、Scopus、MEDLINE、eLIBRARY、RSCI数据库和关键文章的参考书目中进行了系统的文献搜索。纳入标准:系统综述、荟萃分析、多中心研究、对照队列研究、脑瘫导致脊柱侧弯儿童的非控制队列研究,小儿脑瘫患者年龄为<20岁。排除标准:临床病例、观察、会议论文集、患者年龄为>20岁、其他病因的神经肌肉性脊柱侧弯。

结果。本综述最初纳入156篇文章,其中符合纳入标准的出版物25篇:3项系统综述和荟萃分析,3项以人群为基础的研究,1项多中心研究,11项对照队列研究,6项非控制队列研究,1项病例对照研究。

结论。脑瘫导致脊柱侧弯的儿童,体重和身体质量指数取决于功能活动。评价脑瘫儿童体重和身体质量指数最合适的参考指标是脑瘫儿童GMFCS分层生长图。体重不足和低身体质量指数(低于10%)
是脊柱侧弯手术矫正后增加并发症风险的因素。今后,为了对脑瘫儿童的人体测量指标进行更理想的
评估,有必要制定国家专门的百分位数表。

全文:

受限制的访问

作者简介

Elena Shchurova

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

编辑信件的主要联系方式.
Email: elena.shurova@mail.ru
SPIN 代码: 6919-1265

PhD, D.Sc. in Biology, leading researcher. Clinical Laboratory of the Clinic of Spine Pathology and Rare Diseases

俄罗斯联邦, Kurgan

Sergei Riabykh

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

Email: rso_@mail.ru
ORCID iD: 0000-0003-0816-1004

MD, PhD, D.Sc., orthopedic and trauma surgeon, Head of the Clinic of Spine Pathology and Rare Diseases

俄罗斯联邦, Kurgan

Egor Filatov

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

Email: filatov@ro.ru

MD, PhD, orthopedic trauma surgeon, junior researcher. Clinic of Spine Pathology and Rare Diseases

俄罗斯联邦, Kurgan

Polina Ochirova

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

Email: poleen@yandex.ru
ORCID iD: 0000-0001-5172-4429

MD, PhD, orthopaedic and trauma surgeon. Clinic of Spine Pathology and Rare Diseases

俄罗斯联邦, Kurgan

Tatyana Ryabykh

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

Email: rtatav@rambler.ru
ORCID iD: 0000-0002-9315-3035

MD, board-certified paediatrist

俄罗斯联邦, Kurgan

参考

  1. Бадалян Л.О. Детская неврология. – М.: МЕДпресс-информ, 2019. [Badalyan LO. Detskaya nevrologiya. Moscow: MEDPRESS-Inform; 2019. (In Russ.)]
  2. Батышева Т.Т., Быкова О.В., Виноградов А.В. Приверженность семьи к лечению ребенка с неврологической патологией // Журнал неврологии и психиатрии им. С.С. Корсакова. – 2012. – Т. 7. – № 2. – С. 56–63. [Batysheva TT, Bykova OV, Vinogradov AV. Family’s adherence to treatment of the child with a neurological pathology. Zh Nevrol Psikhiatr Im S S Korsakova. 2012;7(2):56-63. (In Russ.)]
  3. Michael-Asalu A, Taylor G, Campbell H, et al. Cerebral Palsy: Diagnosis, Epidemiology, Genetics, and Clinical Update. Adv Pediatr. 2019;66:189-208. https://doi.org/10.1016/j.yapd.2019.04.002.
  4. Bodendorfer BM, Shah SA. Chapter 7. Neuromuscular Scoliosis. In: Thoracic Spine Surgery. 2019. P. 53-63.
  5. Рябых Т.В., Томов А.Д., Попков Д.А. Особенности соматического статуса у детей с детским церебральным параличом при оперативном ортопедическом лечении // Гений ортопедии. – 2016. – № 3. – С. 52–57. [Riabykh TV, Tomov AD, Popkov DA. Somatic status characteristics in children with cerebral palsy during surgical orthopedic treatment. Genij Ortopedii. 2016;(3):52-57. (In Russ.)]. https://doi.org/10.18019/1028-4427-2016-3-52-57.
  6. Persson-Bunke M, Hagglund G, Lauge-Pedersen H, et al. Scoliosis in a total population of children with cerebral palsy. Spine (Phila Pa 1976). 2012;37(12):E708-713. https://doi.org/10.1097/BRS.0b013e318246a962.
  7. Imrie MN, Yaszay B. Management of spinal deformity in cerebral palsy. Orthop Clin North Am. 2010;41(4):531-547. https://doi.org/10.1016/j.ocl.2010.06.008.
  8. Rutz E, Brunner R. Management of spinal deformity in cerebral palsy: Conservative treatment. J Child Orthop. 2013;7(5):415-418. https://doi.org/10.1007/s11832-013-0516-5.
  9. Weinstein SL, Flynn JM. Lovell and Winter’s Pediatric Orthopaedics. 7th ed. Lippincott Williams&Wilkins; 2013.
  10. Putzier M, Gross C, Zahn RK, et al. Characteristics of neuromuscular scoliosis. Orthopade. 2016;45(6):500-508. https://doi.org/10.1007/s00132-016-3272-7.
  11. Banta JV, Drummond DS, Ferguson RL. The treatment of neuromuscular scoliosis. Instr Course Lect. 1999;48:551-562.
  12. Бакланов А.Н., Колесов С.В., Шавырин И.А. Оперативное лечение деформаций позвоночника у пациентов с детским церебральным параличом // Травматология и ортопедия России. – 2011. – № 3. – С. 73–79. [Baklanov AN, Kolesov SV, Shavyrin IA. Operative treatment of spinal deformities in patients with cerebral palsy. Traumatology and orthopedics of Russia. 2011;(3):73-79. (In Russ.)]. https://doi.org/10.21823/2311-2905-2011-0-3-73-79.
  13. Legg J, Davies E, Raich AL, et al. Surgical correction of scoliosis in children with spastic quadriplegia: Benefits, adverse effects, and patient selection. Evid Based Spine Care J. 2014;5(1):38-51. https://doi.org/10.1055/s-0034-1370898.
  14. Samdani AF, Belin EJ, Bennett JT, et al. Major perioperative complications after spine surgery in patients with cerebral palsy: Assessment of risk factors. Eur Spine J. 2016;25(3):795-800. https://doi.org/10.1007/s00586-015-4054-
  15. Smith JS, Shaffrey CI, Sansur CA, et al. Rates of infection after spine surgery based on 108,419 procedures: A report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976). 2011;36(7):556-563. https://doi.org/10.1097/BRS.0b013e3181eadd41.
  16. Sebaaly A, El Rachkidi R, Yaacoub JJ, et al. Management of spinal infections in children with cerebral palsy. Orthop Traumatol Surg Res. 2016;102(6):801-805. https://doi.org/10.1016/j.otsr.2016.04.015.
  17. Jevsevar DS, Karlin LI. The relationship between preoperative nutritional status and complications after an operation for scoliosis in patients who have cerebral palsy. J Bone Joint Surg Am. 1993;75(6):880-884. https://doi.org/10.2106/00004623-199306000-00008.
  18. Minhas SV, Chow I, Otsuka NY. The effect of body mass index on postoperative morbidity after orthopaedic surgery in children with cerebral palsy. J Pediatr Orthop. 2016;36(5):505-510. https://doi.org/10.1097/BPO.0000000000000475.
  19. Janjua MB, Toll B, Ghandi S, et al. Risk factors for wound infections after deformity correction surgery in neuromuscular scoliosis. Pediatr Neurosurg. 2019;54(2):108-115. https://doi.org/10.1159/000496693.
  20. Subramanyam R, Schaffzin J, Cudilo EM, et al. Systematic review of risk factors for surgical site infection in pediatric scoliosis surgery. Spine J. 2015;15(6):1422-1431. https://doi.org/10.1016/j.spinee.2015.03.005.
  21. Who.int [Internet]. Growth reference data for 5-19 years [cited 2020 Aug 30]. Available from: https://www.who.int/growthref/en/.
  22. Cdc.gov [Internet]. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. Selected percentiles and LMS Parameters [cited 2020 Aug 30]. Available from: http://www.cdc.gov/growthcharts/percentile_data_files.htm.
  23. de Onis M, Garza C, Onyango AW, et al. WHO growth standards for infants and young children. Arch Pediatr. 2009;16(1):47-53. https://doi.org/10.1016/ j.arcped.2008.10.010.
  24. Malik AT, Tamer R, Yu E, et al. The impact of body mass index (BMI) on 30-day outcomes following posterior spinal fusion in neuromuscular scoliosis. Spine (Phila Pa 1976). 2019;44(19):1348-1355. https://doi.org/10.1097/BRS.0000000000003084.
  25. Simsek TT, Tuc G. Examination of the relation between body mass index, functional level and health-related quality of life in children with cerebral palsy. Turk Pediatri Ars. 2014;49(2):130-137. https://doi.org/10.5152/tpa.2014.1238.
  26. Pascoe J, Thomason P, Graham HK, et al. Body mass index in ambulatory children with cerebral palsy: A cohort study. J Paediatr Child Health. 2016;52(4):417-421. https://doi.org/10.1111/jpc.13097.
  27. Hurvitz EA, Green LB, Hornyak JE, et al. Body mass index measures in children with cerebral palsy related to gross motor function classification: A clinic-based study. Am J Phys Med Rehabil. 2008;87(5):395-403. https://doi.org/10.1097/PHM.0b013e3181617736.
  28. Feeley BT, Gollapudi K, Otsuka NY. Body mass index in ambulatory cerebral palsy patients. J Pediatr Orthop B. 2007;16(3):165-169. https://doi.org/10.1097/01.bpb.0000236230.44819.95.
  29. Wang F, Cai Q, Shi W, et al. A cross-sectional survey of growth and nutritional status in children with cerebral palsy in West China. Pediatr Neurol. 2016;58:90-97. https://doi.org/10.1016/j.pediatrneurol.2016.01.002.
  30. Almuneef AR, Almajwal A, Alam I, et al. Malnutrition is common in children with cerebral palsy in Saudi Arabia — a cross-sectional clinical observational study. BMC Neurol. 2019;19(1):317. https://doi.org/10.1186/s12883-019-1553-6.
  31. Walker JL, Bell KL, Stevenson RD, et al. Differences in body composition according to functional ability in preschool-aged children with cerebral palsy. Clin Nutr. 2015;34(1):140-145. https://doi.org/10.1016/j.clnu. 2014.02.007.
  32. Finbraten AK, Martins C, Andersen GL, et al. Assessment of body composition in children with cerebral palsy: A cross-sectional study in Norway. Dev Med Child Neurol. 2015;57(9):858-864. https://doi.org/10.1111/dmcn.12752.
  33. Oftedal S, Davies PS, Boyd RN, et al. Longitudinal growth, diet, and physical activity in young children with cerebral palsy. Pediatrics. 2016;138(4). https://doi.org/10.1542/peds.2016-1321.
  34. Oftedal S, Davies PS, Boyd RN, et al. Body composition, diet, and physical activity: A longitudinal cohort study in preschoolers with cerebral palsy. Am J Clin Nutr. 2017;105(2):369-378. https://doi.org/10.3945/ajcn.116.137810.
  35. Herrera-Anaya E, Angarita-Fonseca A, Herrera-Galindo VM, et al. Association between gross motor function and nutritional status in children with cerebral palsy: A cross-sectional study from Colombia. Dev Med Child Neurol. 2016;58(9):936-941. https://doi.org/10.1111/dmcn.13108.
  36. Sung KH, Chung CY, Lee KM, et al. Differences in body composition according to gross motor function in children with cerebral palsy. Arch Phys Med Rehabil. 2017;98(11):2295-2300. https://doi.org/10.1016/ j.apmr.2017.04.005.
  37. Melunovic M, Hadzagic-Catibusic F, Bilalovic V, et al. Anthropometric parameters of nutritional status in children with cerebral palsy. Mater Sociomed. 2017;29(1):68-72. https://doi.org/10.5455/msm.2017. 29.68-72.
  38. Whitney DG, Miller F, Pohlig RT, Modlesky CM. BMI does not capture the high fat mass index and low fat-free mass index in children with cerebral palsy and proposed statistical models that improve this accuracy. Int J Obes (Lond). 2019;43(1):82-90. https://doi.org/10.1038/s41366-018-0183-1.
  39. Бидямшин Р.Р., Нецветов П.В., Рябых Т.В., Попков Д.А. Особенности ортопедического и соматического статуса у пациентов с тяжелыми формами ДЦП, осложненными вывихом бедра // Гений ортопедии. – 2018. – Т. 24. – № 1. – С. 33–43. [Bidiamshin RR, Netsvetov PV, Riabykh TV, Popkov DA. Peculiar features of orthopaedic and somatic condition in patients with severe types of cerebral palsy. Genij ortopedii. 2018;24(1):33-43. (In Russ.)]. https://doi.org/10.18019/1028-4427-2018-24-1-33-43.
  40. Choe YR, Kim JS, Kim KH, Yi TI. Relationship between functional level and muscle thickness in young children with cerebral palsy. Ann Rehabil Med. 2018;42(2):286-295. https://doi.org/10.5535/arm.2018.42.2.286.
  41. Duran I, Schulze J, Martakis K, et al. Diagnostic performance of body mass index to identify excess body fat in children with cerebral palsy. Dev Med Child Neurol. 2018;60(7):680-686. https://doi.org/10.1111/dmcn.13714.
  42. Duran I, Martakis K, Rehberg M, et al. The appendicular lean mass index is a suitable surrogate for muscle mass in children with cerebral palsy. J Nutr. 2019;149(10):1863-1868. https://doi.org/10.1093/jn/nxz127.
  43. Рахмаева Р.Ф., Камалова А.А., Аюпова В.А. Оценка антропометрических показателей и компонентного состава тела у детей с детским церебральным параличом // Российский вестник перинатологии и педиатрии. – 2019. – Т. 64. – № 5. – С. 204–208. [Rahmaeva RF, Kamalova AA, Ayupova VA. Evaluation of anthropometric parameters and body composition in children with cerebral palsy. Rossiiskii vestnik perinatologii i pediatrii. 2019;64(5):204-208. (In Russ.)]. https://doi.org/10.21508/1027-4065-201964-5-204-208.
  44. Haapala H, Peterson MD, Daunter A, Hurvitz EA. Agreement between actual height and estimated height using segmental limb lengths for individuals with cerebral palsy. Am J Phys Med Rehabil. 2015;94(7):539-546. https://doi.org/10.1097/PHM.0000000000000205.
  45. Garcia Iniguez JA, Vasquez-Garibay EM, Garcia Contreras A, et al. Assessment of anthropometric indicators in children with cerebral palsy according to the type of motor dysfunction and reference standard. Nutr Hosp. 2017;34(2):315-322. https://doi.org/10.20960/nh.353.
  46. Chumlea WMC, Guo SS, Steinbaugh ML. Prediction of stature from knee height for black and white adults and children with application to mobility-impaired or handicapped persons. J Am Diet Assoc. 1994;94(12):1385-1391. https://doi.org/10.1016/0002-8223(94)92540-2.
  47. Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch Pediatr Adolesc Med. 1995;149(6):658-662. https://doi.org/10.1001/archpedi.1995.02170190068012.
  48. Gauld LM, Kappers J, Carlin JB, Robertson CF. Height prediction from ulna length. Dev Med Child Neurol. 2004;46(7):475-480. https://doi.org/10.1017/s0012162204000787.
  49. Amezquita GM, Hodgson BM. Alternatives to estimate stature during nutritional assessment of children with cerebral palsy. Rev Chil Pediatr. 2014;85(1):22-30. https://doi.org/10.4067/S0370-41062014000100003.
  50. García-Contreras A, Vásquez-Garibay E, Romero-Velarde E, et al. Height and body mass index estimated by alternative measures in children with spastic quadriplegic cerebral palsy and moderate/severe malnutrition. Br J Med Med Res. 2016;14(12):1-10. https://doi.org/10.9734/bjmmr/2016/25458.
  51. Samson-Fang L, Bell KL. Assessment of growth and nutrition in children with cerebral palsy. Eur J Clin Nutr. 2013;67 Suppl 2:S5-8. https://doi.org/10.1038/ejcn.2013.223.
  52. Tomoum HY, Badawy NB, Hassan NE, Alian KM. Anthropometry and body composition analysis in children with cerebral palsy. Clin Nutr. 2010;29(4):477-481. https://doi.org/10.1016/j.clnu.2009.10.009.
  53. Araujo LA, Silva LR. Anthropometric assessment of patients with cerebral palsy: Which curves are more appropriate? J Pediatr (Rio J). 2013;89(3):307-314. https://doi.org/10.1016/j.jped.2012.11.008.
  54. Wright CM, Reynolds L, Ingram E, et al. Validation of US cerebral palsy growth charts using a UK cohort. Dev Med Child Neurol. 2017;59(9):933-938. https://doi.org/10.1111/dmcn.13495.
  55. Vinals-Labanino CP, Velazquez-Bustamante AE, Vargas-Santiago SI, Arenas-Sordo ML. Usefulness of cerebral palsy curves in mexican patients: A cross-sectional study. J Child Neurol. 2019;34(6):332-338. https://doi.org/10.1177/0883073819830560.
  56. Egenolf P, Duran I, Stark C, et al. Development of disorder-specific normative data for growth in children with cerebral palsy. Eur J Pediatr. 2019;178(6):811-822. https://doi.org/10.1007/s00431-019-03360-5.
  57. Day SM, Strauss DJ, Vachon PJ, et al. Growth patterns in a population of children and adolescents with cerebral palsy. Dev Med Child Neurol. 2007;49(3):167-171. https://doi.org/10.1111/j.1469-8749.2007.00167.x.
  58. Brooks J, Day S, Shavelle R, Strauss D. Low weight, morbidity, and mortality in children with cerebral palsy: New clinical growth charts. Pediatrics. 2011;128(2):e299-307. https://doi.org/10.1542/peds.2010-2801.
  59. Brooks J. Life Expectancy Project. 2011.
  60. Wright CM, Williams AF, Elliman D, et al. Using the new UK-WHO growth charts. BMJ. 2010;340:c1140. https://doi.org/10.1136/bmj.c1140.
  61. Tsantes AG, Papadopoulos DV, Lytras T, et al. Association of malnutrition with surgical site infection following spinal surgery: Systematic review and meta-analysis. J Hosp Infect. 2020;104(1):111-119. https://doi.org/10.1016/j.jhin.2019.09.015.
  62. Baranek ES, Maier SP, 2nd, Matsumoto H, et al. Gross motor function classification system specific growth charts-utility as a risk stratification tool for surgical site infection following spine surgery. J Pediatr Orthop. 2019;39(4):e298-e302. https://doi.org/10.1097/BPO.0000000000001285.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Shchurova E., Riabykh S., Filatov E., Ochirova P., Ryabykh T., 2020

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


##common.cookie##