The current view on the body mass and body mass index of children with spine deformity due to cerebral palsy: a systematic review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Currently, several authors believe that one of the main risk factors for the development of postoperative complications after surgical correction of scoliosis due to cerebral palsy (CP) is the body weight, changes in it, and the body mass index (BMI). However, a unified approach for the analysis of these indicators in children with CP remains unclear.

Aim. Analysis of the available data in the modern literature on the issues of body mass and BMI in children with spine deformity due to CP.

Materials and methods. A systematic search of the literature was conducted in open electronic databases of the scientific literature PubMed, Web of Science, Scopus, MEDLINE, eLIBRARY, Russian Index of Scientific Citation (RISC), and bibliography of key articles. The criteria of inclusion were systematic reviews, meta-analyses, multicenter studies, controlled cohort studies, uncontrolled cohort studies of children with spine deformities due to CP, and age of the CP patient <20 years. The criteria of exclusion were clinical cases, observations, materials of conferences, the patient’s age >20 years, and neuromuscular scoliosis of another etiology.

Results. The review primarily included 156 articles with the publication date of 1990–2020. Among them, 25 publications met the following criteria of inclusion: 3 systematic reviews and meta-analysis, 3 population studies, 1 multicenter study, 11 controlled cohort studies, 6 uncontrolled cohort studies, and 1 case-control study.

Conclusion. Body mass and BMI correlate with the functional activities of children with scoliosis due to CP. GMFCS stratified growth graphs of children with CP are the most appropriate reference indicators for assessing body mass and BMI of children with CP. Underweight body and low BMI (below the 10th percentile) are important factors that contribute to high risk of complications after scoliosis surgical correction. In the future, it will be necessary to develop national special centile tables for the optimal assessment of the anthropometric indicators in children with CP.

Full Text

Restricted Access

About the authors

Elena N. Shchurova

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

Author for correspondence.
Email: elena.shurova@mail.ru
SPIN-code: 6919-1265

PhD, D.Sc. in Biology, leading researcher. Clinical Laboratory of the Clinic of Spine Pathology and Rare Diseases

Russian Federation, Kurgan

Sergei O. Riabykh

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

Email: rso_@mail.ru
ORCID iD: 0000-0003-0816-1004

MD, PhD, D.Sc., orthopedic and trauma surgeon, Head of the Clinic of Spine Pathology and Rare Diseases

Russian Federation, Kurgan

Egor Yu. Filatov

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

Email: filatov@ro.ru

MD, PhD, orthopedic trauma surgeon, junior researcher. Clinic of Spine Pathology and Rare Diseases

Russian Federation, Kurgan

Polina V. Ochirova

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

Email: poleen@yandex.ru
ORCID iD: 0000-0001-5172-4429

MD, PhD, orthopaedic and trauma surgeon. Clinic of Spine Pathology and Rare Diseases

Russian Federation, Kurgan

Tatyana V. Ryabykh

National Ilizarov Medical Research Centre for Orthopaedics and Traumatology

Email: rtatav@rambler.ru
ORCID iD: 0000-0002-9315-3035

MD, board-certified paediatrist

Russian Federation, Kurgan

References

  1. Бадалян Л.О. Детская неврология. – М.: МЕДпресс-информ, 2019. [Badalyan LO. Detskaya nevrologiya. Moscow: MEDPRESS-Inform; 2019. (In Russ.)]
  2. Батышева Т.Т., Быкова О.В., Виноградов А.В. Приверженность семьи к лечению ребенка с неврологической патологией // Журнал неврологии и психиатрии им. С.С. Корсакова. – 2012. – Т. 7. – № 2. – С. 56–63. [Batysheva TT, Bykova OV, Vinogradov AV. Family’s adherence to treatment of the child with a neurological pathology. Zh Nevrol Psikhiatr Im S S Korsakova. 2012;7(2):56-63. (In Russ.)]
  3. Michael-Asalu A, Taylor G, Campbell H, et al. Cerebral Palsy: Diagnosis, Epidemiology, Genetics, and Clinical Update. Adv Pediatr. 2019;66:189-208. https://doi.org/10.1016/j.yapd.2019.04.002.
  4. Bodendorfer BM, Shah SA. Chapter 7. Neuromuscular Scoliosis. In: Thoracic Spine Surgery. 2019. P. 53-63.
  5. Рябых Т.В., Томов А.Д., Попков Д.А. Особенности соматического статуса у детей с детским церебральным параличом при оперативном ортопедическом лечении // Гений ортопедии. – 2016. – № 3. – С. 52–57. [Riabykh TV, Tomov AD, Popkov DA. Somatic status characteristics in children with cerebral palsy during surgical orthopedic treatment. Genij Ortopedii. 2016;(3):52-57. (In Russ.)]. https://doi.org/10.18019/1028-4427-2016-3-52-57.
  6. Persson-Bunke M, Hagglund G, Lauge-Pedersen H, et al. Scoliosis in a total population of children with cerebral palsy. Spine (Phila Pa 1976). 2012;37(12):E708-713. https://doi.org/10.1097/BRS.0b013e318246a962.
  7. Imrie MN, Yaszay B. Management of spinal deformity in cerebral palsy. Orthop Clin North Am. 2010;41(4):531-547. https://doi.org/10.1016/j.ocl.2010.06.008.
  8. Rutz E, Brunner R. Management of spinal deformity in cerebral palsy: Conservative treatment. J Child Orthop. 2013;7(5):415-418. https://doi.org/10.1007/s11832-013-0516-5.
  9. Weinstein SL, Flynn JM. Lovell and Winter’s Pediatric Orthopaedics. 7th ed. Lippincott Williams&Wilkins; 2013.
  10. Putzier M, Gross C, Zahn RK, et al. Characteristics of neuromuscular scoliosis. Orthopade. 2016;45(6):500-508. https://doi.org/10.1007/s00132-016-3272-7.
  11. Banta JV, Drummond DS, Ferguson RL. The treatment of neuromuscular scoliosis. Instr Course Lect. 1999;48:551-562.
  12. Бакланов А.Н., Колесов С.В., Шавырин И.А. Оперативное лечение деформаций позвоночника у пациентов с детским церебральным параличом // Травматология и ортопедия России. – 2011. – № 3. – С. 73–79. [Baklanov AN, Kolesov SV, Shavyrin IA. Operative treatment of spinal deformities in patients with cerebral palsy. Traumatology and orthopedics of Russia. 2011;(3):73-79. (In Russ.)]. https://doi.org/10.21823/2311-2905-2011-0-3-73-79.
  13. Legg J, Davies E, Raich AL, et al. Surgical correction of scoliosis in children with spastic quadriplegia: Benefits, adverse effects, and patient selection. Evid Based Spine Care J. 2014;5(1):38-51. https://doi.org/10.1055/s-0034-1370898.
  14. Samdani AF, Belin EJ, Bennett JT, et al. Major perioperative complications after spine surgery in patients with cerebral palsy: Assessment of risk factors. Eur Spine J. 2016;25(3):795-800. https://doi.org/10.1007/s00586-015-4054-
  15. Smith JS, Shaffrey CI, Sansur CA, et al. Rates of infection after spine surgery based on 108,419 procedures: A report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976). 2011;36(7):556-563. https://doi.org/10.1097/BRS.0b013e3181eadd41.
  16. Sebaaly A, El Rachkidi R, Yaacoub JJ, et al. Management of spinal infections in children with cerebral palsy. Orthop Traumatol Surg Res. 2016;102(6):801-805. https://doi.org/10.1016/j.otsr.2016.04.015.
  17. Jevsevar DS, Karlin LI. The relationship between preoperative nutritional status and complications after an operation for scoliosis in patients who have cerebral palsy. J Bone Joint Surg Am. 1993;75(6):880-884. https://doi.org/10.2106/00004623-199306000-00008.
  18. Minhas SV, Chow I, Otsuka NY. The effect of body mass index on postoperative morbidity after orthopaedic surgery in children with cerebral palsy. J Pediatr Orthop. 2016;36(5):505-510. https://doi.org/10.1097/BPO.0000000000000475.
  19. Janjua MB, Toll B, Ghandi S, et al. Risk factors for wound infections after deformity correction surgery in neuromuscular scoliosis. Pediatr Neurosurg. 2019;54(2):108-115. https://doi.org/10.1159/000496693.
  20. Subramanyam R, Schaffzin J, Cudilo EM, et al. Systematic review of risk factors for surgical site infection in pediatric scoliosis surgery. Spine J. 2015;15(6):1422-1431. https://doi.org/10.1016/j.spinee.2015.03.005.
  21. Who.int [Internet]. Growth reference data for 5-19 years [cited 2020 Aug 30]. Available from: https://www.who.int/growthref/en/.
  22. Cdc.gov [Internet]. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. Selected percentiles and LMS Parameters [cited 2020 Aug 30]. Available from: http://www.cdc.gov/growthcharts/percentile_data_files.htm.
  23. de Onis M, Garza C, Onyango AW, et al. WHO growth standards for infants and young children. Arch Pediatr. 2009;16(1):47-53. https://doi.org/10.1016/ j.arcped.2008.10.010.
  24. Malik AT, Tamer R, Yu E, et al. The impact of body mass index (BMI) on 30-day outcomes following posterior spinal fusion in neuromuscular scoliosis. Spine (Phila Pa 1976). 2019;44(19):1348-1355. https://doi.org/10.1097/BRS.0000000000003084.
  25. Simsek TT, Tuc G. Examination of the relation between body mass index, functional level and health-related quality of life in children with cerebral palsy. Turk Pediatri Ars. 2014;49(2):130-137. https://doi.org/10.5152/tpa.2014.1238.
  26. Pascoe J, Thomason P, Graham HK, et al. Body mass index in ambulatory children with cerebral palsy: A cohort study. J Paediatr Child Health. 2016;52(4):417-421. https://doi.org/10.1111/jpc.13097.
  27. Hurvitz EA, Green LB, Hornyak JE, et al. Body mass index measures in children with cerebral palsy related to gross motor function classification: A clinic-based study. Am J Phys Med Rehabil. 2008;87(5):395-403. https://doi.org/10.1097/PHM.0b013e3181617736.
  28. Feeley BT, Gollapudi K, Otsuka NY. Body mass index in ambulatory cerebral palsy patients. J Pediatr Orthop B. 2007;16(3):165-169. https://doi.org/10.1097/01.bpb.0000236230.44819.95.
  29. Wang F, Cai Q, Shi W, et al. A cross-sectional survey of growth and nutritional status in children with cerebral palsy in West China. Pediatr Neurol. 2016;58:90-97. https://doi.org/10.1016/j.pediatrneurol.2016.01.002.
  30. Almuneef AR, Almajwal A, Alam I, et al. Malnutrition is common in children with cerebral palsy in Saudi Arabia — a cross-sectional clinical observational study. BMC Neurol. 2019;19(1):317. https://doi.org/10.1186/s12883-019-1553-6.
  31. Walker JL, Bell KL, Stevenson RD, et al. Differences in body composition according to functional ability in preschool-aged children with cerebral palsy. Clin Nutr. 2015;34(1):140-145. https://doi.org/10.1016/j.clnu. 2014.02.007.
  32. Finbraten AK, Martins C, Andersen GL, et al. Assessment of body composition in children with cerebral palsy: A cross-sectional study in Norway. Dev Med Child Neurol. 2015;57(9):858-864. https://doi.org/10.1111/dmcn.12752.
  33. Oftedal S, Davies PS, Boyd RN, et al. Longitudinal growth, diet, and physical activity in young children with cerebral palsy. Pediatrics. 2016;138(4). https://doi.org/10.1542/peds.2016-1321.
  34. Oftedal S, Davies PS, Boyd RN, et al. Body composition, diet, and physical activity: A longitudinal cohort study in preschoolers with cerebral palsy. Am J Clin Nutr. 2017;105(2):369-378. https://doi.org/10.3945/ajcn.116.137810.
  35. Herrera-Anaya E, Angarita-Fonseca A, Herrera-Galindo VM, et al. Association between gross motor function and nutritional status in children with cerebral palsy: A cross-sectional study from Colombia. Dev Med Child Neurol. 2016;58(9):936-941. https://doi.org/10.1111/dmcn.13108.
  36. Sung KH, Chung CY, Lee KM, et al. Differences in body composition according to gross motor function in children with cerebral palsy. Arch Phys Med Rehabil. 2017;98(11):2295-2300. https://doi.org/10.1016/ j.apmr.2017.04.005.
  37. Melunovic M, Hadzagic-Catibusic F, Bilalovic V, et al. Anthropometric parameters of nutritional status in children with cerebral palsy. Mater Sociomed. 2017;29(1):68-72. https://doi.org/10.5455/msm.2017. 29.68-72.
  38. Whitney DG, Miller F, Pohlig RT, Modlesky CM. BMI does not capture the high fat mass index and low fat-free mass index in children with cerebral palsy and proposed statistical models that improve this accuracy. Int J Obes (Lond). 2019;43(1):82-90. https://doi.org/10.1038/s41366-018-0183-1.
  39. Бидямшин Р.Р., Нецветов П.В., Рябых Т.В., Попков Д.А. Особенности ортопедического и соматического статуса у пациентов с тяжелыми формами ДЦП, осложненными вывихом бедра // Гений ортопедии. – 2018. – Т. 24. – № 1. – С. 33–43. [Bidiamshin RR, Netsvetov PV, Riabykh TV, Popkov DA. Peculiar features of orthopaedic and somatic condition in patients with severe types of cerebral palsy. Genij ortopedii. 2018;24(1):33-43. (In Russ.)]. https://doi.org/10.18019/1028-4427-2018-24-1-33-43.
  40. Choe YR, Kim JS, Kim KH, Yi TI. Relationship between functional level and muscle thickness in young children with cerebral palsy. Ann Rehabil Med. 2018;42(2):286-295. https://doi.org/10.5535/arm.2018.42.2.286.
  41. Duran I, Schulze J, Martakis K, et al. Diagnostic performance of body mass index to identify excess body fat in children with cerebral palsy. Dev Med Child Neurol. 2018;60(7):680-686. https://doi.org/10.1111/dmcn.13714.
  42. Duran I, Martakis K, Rehberg M, et al. The appendicular lean mass index is a suitable surrogate for muscle mass in children with cerebral palsy. J Nutr. 2019;149(10):1863-1868. https://doi.org/10.1093/jn/nxz127.
  43. Рахмаева Р.Ф., Камалова А.А., Аюпова В.А. Оценка антропометрических показателей и компонентного состава тела у детей с детским церебральным параличом // Российский вестник перинатологии и педиатрии. – 2019. – Т. 64. – № 5. – С. 204–208. [Rahmaeva RF, Kamalova AA, Ayupova VA. Evaluation of anthropometric parameters and body composition in children with cerebral palsy. Rossiiskii vestnik perinatologii i pediatrii. 2019;64(5):204-208. (In Russ.)]. https://doi.org/10.21508/1027-4065-201964-5-204-208.
  44. Haapala H, Peterson MD, Daunter A, Hurvitz EA. Agreement between actual height and estimated height using segmental limb lengths for individuals with cerebral palsy. Am J Phys Med Rehabil. 2015;94(7):539-546. https://doi.org/10.1097/PHM.0000000000000205.
  45. Garcia Iniguez JA, Vasquez-Garibay EM, Garcia Contreras A, et al. Assessment of anthropometric indicators in children with cerebral palsy according to the type of motor dysfunction and reference standard. Nutr Hosp. 2017;34(2):315-322. https://doi.org/10.20960/nh.353.
  46. Chumlea WMC, Guo SS, Steinbaugh ML. Prediction of stature from knee height for black and white adults and children with application to mobility-impaired or handicapped persons. J Am Diet Assoc. 1994;94(12):1385-1391. https://doi.org/10.1016/0002-8223(94)92540-2.
  47. Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch Pediatr Adolesc Med. 1995;149(6):658-662. https://doi.org/10.1001/archpedi.1995.02170190068012.
  48. Gauld LM, Kappers J, Carlin JB, Robertson CF. Height prediction from ulna length. Dev Med Child Neurol. 2004;46(7):475-480. https://doi.org/10.1017/s0012162204000787.
  49. Amezquita GM, Hodgson BM. Alternatives to estimate stature during nutritional assessment of children with cerebral palsy. Rev Chil Pediatr. 2014;85(1):22-30. https://doi.org/10.4067/S0370-41062014000100003.
  50. García-Contreras A, Vásquez-Garibay E, Romero-Velarde E, et al. Height and body mass index estimated by alternative measures in children with spastic quadriplegic cerebral palsy and moderate/severe malnutrition. Br J Med Med Res. 2016;14(12):1-10. https://doi.org/10.9734/bjmmr/2016/25458.
  51. Samson-Fang L, Bell KL. Assessment of growth and nutrition in children with cerebral palsy. Eur J Clin Nutr. 2013;67 Suppl 2:S5-8. https://doi.org/10.1038/ejcn.2013.223.
  52. Tomoum HY, Badawy NB, Hassan NE, Alian KM. Anthropometry and body composition analysis in children with cerebral palsy. Clin Nutr. 2010;29(4):477-481. https://doi.org/10.1016/j.clnu.2009.10.009.
  53. Araujo LA, Silva LR. Anthropometric assessment of patients with cerebral palsy: Which curves are more appropriate? J Pediatr (Rio J). 2013;89(3):307-314. https://doi.org/10.1016/j.jped.2012.11.008.
  54. Wright CM, Reynolds L, Ingram E, et al. Validation of US cerebral palsy growth charts using a UK cohort. Dev Med Child Neurol. 2017;59(9):933-938. https://doi.org/10.1111/dmcn.13495.
  55. Vinals-Labanino CP, Velazquez-Bustamante AE, Vargas-Santiago SI, Arenas-Sordo ML. Usefulness of cerebral palsy curves in mexican patients: A cross-sectional study. J Child Neurol. 2019;34(6):332-338. https://doi.org/10.1177/0883073819830560.
  56. Egenolf P, Duran I, Stark C, et al. Development of disorder-specific normative data for growth in children with cerebral palsy. Eur J Pediatr. 2019;178(6):811-822. https://doi.org/10.1007/s00431-019-03360-5.
  57. Day SM, Strauss DJ, Vachon PJ, et al. Growth patterns in a population of children and adolescents with cerebral palsy. Dev Med Child Neurol. 2007;49(3):167-171. https://doi.org/10.1111/j.1469-8749.2007.00167.x.
  58. Brooks J, Day S, Shavelle R, Strauss D. Low weight, morbidity, and mortality in children with cerebral palsy: New clinical growth charts. Pediatrics. 2011;128(2):e299-307. https://doi.org/10.1542/peds.2010-2801.
  59. Brooks J. Life Expectancy Project. 2011.
  60. Wright CM, Williams AF, Elliman D, et al. Using the new UK-WHO growth charts. BMJ. 2010;340:c1140. https://doi.org/10.1136/bmj.c1140.
  61. Tsantes AG, Papadopoulos DV, Lytras T, et al. Association of malnutrition with surgical site infection following spinal surgery: Systematic review and meta-analysis. J Hosp Infect. 2020;104(1):111-119. https://doi.org/10.1016/j.jhin.2019.09.015.
  62. Baranek ES, Maier SP, 2nd, Matsumoto H, et al. Gross motor function classification system specific growth charts-utility as a risk stratification tool for surgical site infection following spine surgery. J Pediatr Orthop. 2019;39(4):e298-e302. https://doi.org/10.1097/BPO.0000000000001285.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Shchurova E.N., Riabykh S.O., Filatov E.Y., Ochirova P.V., Ryabykh T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies