改良Dunn手术对严重青少年股骨头骨骼溶解症患儿脊柱骨盆比值关系的影响

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。青少年股骨头骨骺溶解症是儿童髋关节最严重的疾病之一,其特征是股骨近端骨骺出现不同程度的单侧或双侧畸形。根据P. Roussouly的分类法,受影响关节的股骨部分的严重变形会导致骨盆后倾、腰椎前凸减少、胸椎后凸增加,并形成I型(脊柱后凸)垂直姿势,从而导致腰骶椎的退行性萎缩过程。目前,文献中还没有关于手术治疗对这部分患者椎-骨盆正面和矢状面比例的影响的数据。

本研究旨在对改良Dunn手术前后患有严重青少年股骨头骨骼溶解症的儿童椎-骨盆矢状面比值关系进行放射学对比评估。

材料和方法。本研究包括30名年龄在14至18岁之间、患有严重青少年股骨头骨骺溶解症的患者(30个髋关节),其特点是其中一个关节的骨骺向后方移位超过60°,向下方移位不超过10°,而另一个关节则无移位(前滑阶段)。所有患儿均接受了一侧的改良Dunn手术和另一侧的股骨头骨骺插管螺钉固定术。在术前和术后,患者接受了临床和放射学检查。立位X光片用于评估腰椎前凸和胸椎后凸、骨盆角、骨盆偏离角、骶骨倾斜角和矢状纵轴值。对获得的数据进行了统计处理。

结果。在采取上述干预措施3-3.5年后进行的检查中,骨盆角(PI)的平均值明显增加,符合P. Roussouly提出的III 型垂直姿势(和谐型)。位置指数的平均值也发生了变化:骨盆偏离角(PT)减小,骶骨倾斜角(SS)增大,骨盆后倾消失。腰椎前凸和平均整体腰椎前凸(GLL)增加,导致胸椎后凸和平均胸椎后凸(TK)减少。此外,所有临床观察结果均显示,总体矢状体平衡指数--矢状体垂直轴(SVA)的平均值显著降低,且无躯干失衡现象。

结论。一方面实施改良Dunn手术,另一方面用螺钉固定股骨头骨骺,在对患有严重青少年股骨头骨骺溶解症的儿童进行研究后,矢状脊柱-骨盆关系的所有研究指标均有所改善。因此,根据P. Roussouly的观点,垂直姿势的类型会从I型(脊柱发育不良)变为III型(和谐型),腰骶椎出现退行性萎缩过程的概率也会降低。

全文:

受限制的访问

作者简介

Dmitrii B. Barsukov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

编辑信件的主要联系方式.
Email: dbbarsukov@gmail.com
ORCID iD: 0000-0002-9084-5634
SPIN 代码: 2454-6548

MD, PhD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Pavel I. Bortulev

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: pavel.bortulev@yandex.ru
ORCID iD: 0000-0003-4931-2817
SPIN 代码: 9903-6861

MD, PhD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Ivan Yu. Pozdnikin

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: pozdnikin@gmail.com
ORCID iD: 0000-0002-7026-1586
SPIN 代码: 3744-8613

MD, PhD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Tamila V. Baskaeva

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: tamila-baskaeva@mail.ru
ORCID iD: 0000-0001-9865-2434
SPIN 代码: 5487-4230

MD, orthopedic and trauma surgeon

俄罗斯联邦, Saint Petersburg

参考

  1. Abraham E, Gonzalez MH, Pratap S, et al. Clinical implications of anatomical wear characteristics in slipped capital femoral epiphysis and primary osteoarthritis. J Pediatr Orthop. 2007;27(7):788–795. doi: 10.1097/BPO.0b013e3181558c94
  2. Mamisch TC, Kim YJ, Richolt JA, et al. Femoral morphology due to impingement influences the range of motion in slipped capital femoral epiphysis. Clin Orthop Relat. Res. 2009;467(3):692–698. doi: 10.1007/s11999-008-0477-z
  3. Ziebarth K., Leunig M., Slongo T., et al. Slipped capital femoral epiphysis: relevant pathophysiological findings with open surgery. Clin Orthop Relat Res. 2013;471(7):2156–2162. doi: 10.1007/s11999-013-2818-9
  4. Bellemore JM, Carpenter EC, Yu NY, et al. Biomechanics of slipped capital femoral epiphysis: evaluation of the posterior sloping angle. J Pediatr Orthop. 2016;36(6):651–655. doi: 10.1097/BPO.0000000000000512
  5. Sonnega RJ, van der Sluijs JA, Wainwright AM, et al. Management of slipped capital femoral epiphysis: results of a survey of the members of the European Paediatric Orthopaedic Society. J Child Orthop. 2011;5(6):433–438. doi: 10.1007/s11832-011-0375-x
  6. Vaz G, Roussouly P, Berthonnaud E, et al. Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J. 2002;11(1):80–87. doi: 10.1007/s005860000224
  7. Shefi S, Soudack M, Konen E, et al. Development of the lumbar lordotic curvature in children from age 2 to 20 years. Spine (Phila Pa 1976). 2013;38(10):E602–E608. doi: 10.1097/BRS.0b013e31828b666b
  8. Hasegawa K, Okamoto M. Normative values of spino-pelvic sagittal alignment, balance, age and health-related quality of life in a cohort of healthy adult subjects. Eur Spine J. 2016;25:3675–3686. doi: 10.1007/s00586-016-4702-2
  9. Mac-Thiong JM, Roussouly P, Berthonnaud E, et al. Age- and sex-related variations in sagittal sacropelvic morphology and balance in asymptomatic adults. Eur Spine J. 2011;20(Suppl 5):572–577. doi: 10.1007/s00586-011-1923-2
  10. Roussouly P, Pinheiro-Franco JL. Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J. 2011;20(5):609–618. doi: 10.1007/s00586-011-1928-x
  11. Bortulev PI, Vissarionov SV, Baskov VE, et al. Clinical and roentgenological criteria of spine-pelvis ratios in children with dysplastic femur subluxation. Traumatology and Orthopedics of Russia. 2018;24(3):74–82. (In Russ.) doi: 10.21823/2311-2905-2018-24-3-74-82
  12. Vissarionov SV, Belyanchikov SM, Kartavenko KA, et al. Results of surgical treatment of children with congenital thoracolumbar kyphoscoliosis. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2014;(1):55–64. (In Russ.) doi: 10.14531/ss2014.1.55-64
  13. Prodan AI, Radchenko VA, Khvisyuk AN, et al. Mechanism of vertical posture formation and parameters of sagittal spinopelvic balance in patients with chronic low back pain and sciatica. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2006;(4):61–69. (In Russ.) doi: 10.14531/ss2006.4.61-69
  14. Murray KJ, Le Grande MR, et al. Characterisation of the correlation between standing lordosis and degenerative joint disease in the lower lumbar spine in women and men: a radiographic study. BMC Musculoskeletal Disorders. 2017;18:330. doi: 10.1186/s12891-017-1696-9
  15. Fukushima K, Miyagi M, Inoue G, et al. Relationship between spinal sagittal alignment and acetabular coverage: a patient-matched control study. Arch Orthop Trauma Surg. 2018;138(11):1495–1499. doi: 10.1007/s00402-018-2992-z
  16. Averkiev VA, Kudyashev AL, Artyukh VA, et al. Features of sagittal spino-pelvic relations in patients with hip-spine syndrome. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2012;(4):49–54. (In Russ.) doi: 10.14531/ss2012.4.49-54
  17. Barsukov DB, Bortulev PI, Vissarionov SV, et al. Evaluation of radiological indices of the spine and pelvis ratios in children with a severe form of slipped capital femoral epiphysis. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(4):365–374. (In Russ.) doi: 10.17816/PTORS111772
  18. Krechmar AN. Yunosheskii epifizeoliz golovki bedra (kliniko-eksperimental’noe issledovanie) [abstract dissertation]. Leningrad; 1982. (In Russ.)
  19. Hesarikia H, Rahimnia A. Differences between male and female sagittal spinopelvic parameters and alignment in asymptomatic pediatric and young adults. Minerva Ortopedica e traumatologica. 2018;69(2):44–48 doi: 10.23736/S0394-3410.18.03867-5
  20. Bortulev PI, Vissarionov SV, Baskov VE, et al. Otsenka sostoyaniya pozvonochno-tazovykh sootnoshenii u detei s dvustoronnim vysokim stoyaniem bol’shogo vertela. Sovremennye problemy nauki i obrazovaniya. 2020;(1):66. (In Russ.)
  21. Bortulev PI, Vissarionov SV, Barsukov DB, et al. Evaluation of radiological parameters of the spino-pelvic complex in children with hip subluxation in Legg-Calve-Perthes disease. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2021;27(3):19–28. (In Russ.) doi: 10.21823/2311-2905-2021-27-3-19-28
  22. Le Huec JC, Rossouly P. Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur Spine J. 2011;20(5):556–557. doi: 10.1007/s00586-011-1943-y
  23. Prudnikova OG, Aranovich AM. Clinical and radiological aspects of the sagittal balance of the spine in children with achondroplasia. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2018;6(4)6–12. (In Russ.) doi: 10.17816/PTORS646-12
  24. Abelin K, Vialle R, Lenoir T, et al. The sagittal balance of the spine in children and adolescents with osteogenesis imperfecta. Eur Spine J. 2008;17(12):1697–1704. doi: 10.1007/s00586-008-0793-8
  25. Roussouly P, Berthonnaud E, Dimnet J. Geometrical and mechanical analysis of lumbar lordosis in an asymptomatic population: proposed classification. Rev Chir Orthop Reparatrice Appar Mot. 2003;89(7):632–639.
  26. Sorensen CJ, Norton BJ, et al. Is lumbar lordosis related to low back pain development during prolonged standing? Man Ther. 2015;20(4):553–557. doi: 10.1016/j.math.2015.01.001
  27. Jackson R, Phipps T, Hales C, et al. Pelvic lordosis and alignment in spondylolisthesis. Spine. 2003;28(2):151–160. doi: 10.1097/00007632-200301150-00011
  28. Kartenbender K, Cordier W, Katthagen BD. Long-term follow-up study after corrective Imhauser osteotomy for severe slipped capital femoral epiphysis. J Pediatr Orthop. 2000;20(6):749–756. doi: 10.1097/00004694-200011000-00010
  29. Salvati EA, Robinson JH, Jr. O’Down TJ. Southwick osteotomy for severe chronic slipped capital femoral epiphysis: results and complications. J Bone Joint Surg Am. 1980;62(4):561–570.
  30. Thawrani DP, Feldman DS, Sala DA. Current practice in the management of slipped capital femoral epiphysis. J Pediatr Orthop. 2016;36(3):27–37. doi: 10.1097/BPO.0000000000000496
  31. Ziebarth K, Steppacher SD, Siebenrock KA. The modified Dunn procedure to treat severe slipped capital femoral epiphysis. Orthopade. 2019;48(8):668–676. doi: 10.1007/s00132-019-03774-x
  32. Madan SS, Cooper AP, Davies AG, et al. The treatment of severe slipped capital femoral epiphysis via the Ganz surgical dislocation and anatomical reduction: a prospective study. Bone Joint J. 2013;95-B(3):424–429. doi: 10.1302/0301-620X.95B3.30113

补充文件

附件文件
动作
1. JATS XML
2. Fig. 2. Lateral panoramic radiograph of the spine with femoral heads captured in patient M (14 years 10 months old) as an example of calculating spine–pelvis ratios (see explanations in the text)

下载 (106KB)
3. Fig. 1. Anteroposterior (a) and Lauenstein (b) radiographs of the hip joints of patient Z. (14 years 6 months old) who had slipped capital femoral epiphysis with a posterior epiphyseal displacement of 71° and downward displacement of 7° on the right and absence of displacement (pre-slip stage) on the left. They were performed 3 years after surgery, i.e., modified Dunn surgery on the right side and fixation of the femoral head epiphysis with a screw on the left side

下载 (123KB)
4. Fig. 3. Radiographs of the hip joints (anteroposterior and Lauenstein projections) and lateral panoramic radiographs of the spine with femoral heads captured in patient A (16 years 5 months) before surgery (a–c), 6 months after surgery (d, e), and 3 years 3 months after surgery (f) (see explanations in the text)

下载 (428KB)
5. Fig. 4. Correlations between the main indices of sagittal vertebral–pelvic relationships and posterior epiphyseal displacement: a, immediately before surgery [17]; b, 3–3.5 years after surgery. GLL, global lumbar lordosis; PI, pelvic incidence; PT, pelvic tilt; SS, sacral slope; SSA, spinosacral angle (see explanations in the text)

下载 (183KB)
6. Fig. 5. Regression analysis results showing the relationship between the main indices of sagittal vertebropelvic relationships and residual posterior epiphyseal displacement: a, between PI and residual posterior epiphyseal displacement; b, between SS and residual posterior epiphyseal displacement; c, between SS and GLL; d, between PI and SS. GLL, global lumbar lordosis; PI, pelvic incidence; SS, sacral slope

下载 (279KB)

版权所有 © Эко-Вектор, 2023

许可 URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


##common.cookie##