在有无先天性颈椎发育异常的情况下,手术治疗前后患有中牙列比例的青少年躯干姿势平衡失调的情况

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证。在颌骨畸形和咬合障碍的患者中,发现颈椎形态异常的患者并不少见。有脊髓传导功能可能受损的患者的隐匿性神经功能异常有希望通过体位平衡受损的程度来评估,而体位平衡障碍程度可通过稳定测量法很好地诊断出来。

本研究旨在评估有无先天性颈椎发育异常的近中牙列比例的青少年在重建下颌手术形成建设性咬合前后的姿势稳定性动态。

材料和方法。该研究对31例15-17岁的牙槽颌面综合畸形和中牙列比例患者进行了临床径向和双平台稳定测量研究。根据多螺旋计算机断层扫描结果,主研究组包括10名患有各种先天性颈椎畸形的青少年。对照组包括21例没有颈椎异常CT征象的患者。研究了这些患者在手术咬合矫正前和矫正后1个月至1年内全身压力中心和对侧下肢压力中心运动的稳定测量参数。

结果。与对照组患者相比,主要治疗组患者在手术治疗前身体姿势平衡失调更为明显。具体表现为:额矢状体位稳定性失调、静态肌电图区域和压力中心线速度病理性增加、对侧下肢之间稳定测量参数的异常高度不对称。咬合矫正手术后,对照组患者体位平衡出现恶化迹象:总压力中心运动方向突然改变的系数从18[15-20]%显著增加到23[15-31]%,对侧下肢压力中心线速度的不对称性从0.9[0.3-1.6]毫米/秒显著增加到2.2[0.9-4.4]毫米/秒。相反,我们在主要组患者身上观察到了积极的动态变化--这些参数朝着正常化的方向转变:系数呈下降趋势,压力中心的速率显著下降。

结论。为了提高对患有先天性牙槽颌面综合畸形的青少年进行综合诊断和医疗康复的质量,需要结合姿势的稳定性和运动学评估,对颈椎进行额外的放射检查。

全文:

受限制的访问

作者简介

Igor E. Nikityuk

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: femtotech@mail.ru
ORCID iD: 0000-0001-5546-2729
SPIN 代码: 5901-2048

MD, PhD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Sofia A. Botsarova

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov

Email: Dr.Botsarova@mail.ru
ORCID iD: 0000-0002-4675-8517
SPIN 代码: 4930-8561

MD, PhD student

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Mikhail G. Semenov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov

Email: sem_mikhail@mail.ru
ORCID iD: 0000-0002-1295-1554
SPIN 代码: 2603-1085

MD, PhD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Tatyana V. Murashko

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: popova332@mail.ru
ORCID iD: 0000-0002-0596-3741
SPIN 代码: 9295-6453

MD, radiologist

俄罗斯联邦, Saint Petersburg

Sergei V. Vissarionov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov

编辑信件的主要联系方式.
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN 代码: 7125-4930

MD, PhD, Dr. Sci. (Med.), Professor, Corresponding Member of RAS

俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Kamak H, Yildirim E. The distribution of cervical vertebrae anomalies among dental malocclusions. J Craniovertebr Junction Spine. 2015;6(4):158–161. doi: 10.4103/0974-8237.167857
  2. Aranitasi L, Tarazona B, Zamora N, et al. Influence of skeletal class in the morphology of cervical vertebrae: A study using cone beam computed tomography. Angle Orthod. 2017;87(1):131–137. doi: 10.2319/041416-307.1
  3. Miletich I, Sharpe PT. Neural crest contribution to mammalian tooth formation. Birth Defects Res C Embryo Today. 2004;72(2):200–212. doi: 10.1002/bdrc.20012
  4. Ozturk T, Atilla AO, Yagci A. Cervicovertebral anomalies and/or normal variants in patients with congenitally bilateral absent maxillary lateral incisors. Angle Orthod. 2020;90(3):383–389. doi: 10.2319/061919-418.1
  5. Meibodi SE, Parhiz H, Motamedi MK, et al. Cervical vertebrae anomalies in patients with class III skeletal malocclusion. J Craniovert Jun Spine. 2011;2(2):73–76. doi: 10.4103/0974-8237.100059
  6. Faruqui S, Fida M, Shaikh A. Cervical vertebral anomalies in skeletal malocclusions: a cross-sectional study on orthodontic patients at the Aga Khan University Hospital, Pakistan. Indian Journal of Dental Research. 2014;25(4):480–484. doi: 10.4103/0970-9290.142542
  7. Perez I, Chavez A. Frequency of ponticulus posticus, sella turcica bridge and clinoid enlargement in cleft lip and palate peruvian patients: a comparative study with non-cleft patients. Int J Morphol. 2015;33(3):895–901. doi: 10.4067/S0717-95022015000300015
  8. Di Venere D, Laforgia A, Azzollini D, et al. calcification of the atlanto-occipital ligament (ponticulus posticus) in orthodontic patients: a retrospective study. Healthcare. 2022;10(7):1234. doi: 10.3390/healthcare10071234
  9. Vissarionov SV. Khirurgicheskoe lechenie segmentarnoy nestabil’nosti grudnogo i poyasnichnogo otdelov pozvonochnika u detey [abstract dissertation]. Novosibirsk, 2008. (In Russ.)
  10. Ankith NV, Avinash M, Srivijayanand KS, et al. Congenital osseous anomalies of the cervical spine: occurrence, morphological characteristics, embryological basis and clinical significance: a computed tomography Based Study. Asian Spine J. 2019;13(4):535–543. doi: 10.31616/asj.2018.0260
  11. Chaturvedi A, Klionsky NB, Nadarajah U, et al. Malformed vertebrae: a clinical and imaging review. Insights Imaging. 2018;9(3):343–355. doi: 10.1007/s13244-018-0598-1
  12. Kim HJ. Cervical spine anomalies in children and adolescents. Curr Opin Pediatr. 2013;25(1):72–77. doi: 10.1097/MOP.0b013e32835bd4cf
  13. Gubin AV, Ulrich EV, Ryabykh SO, et al. Surgical roadmap for congenital cervical spine abnormalities. Geniy ortopedii. 2017;23(2):147–153. (In Russ.) doi: 10.18019/1028-4427-2017
  14. Kneis S, Bruetsch V, Dalin D, et al. Altered postural timing and abnormally low use of proprioception in lumbar spinal stenosis pre- and post-surgical decompression. BMC Musculoskelet Disord. 2019;20(1):183. doi: 10.1186/s12891-019-2497-0
  15. Nikityuk IE, Kononova EL, Vissarionov SV. Postural deficiency in children with spinal stenosis. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2018;6(4):13–19. (In Russ.) doi: 10.17816/PTORS6413-19
  16. Semenov MG, Botsarova SA, Stepanova YuV. Analysis of bone-reconstructive surgery aimed at normalization of occlusal relationships of the jaws at the final stages of rehabilitation treatment of children with congenital cleft lips and palate (literature review). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(3):377–387. (In Russ.) doi: 10.17816/PTORS64936
  17. Lo PY, Su BL, You YL, et al. Measuring the reliability of postural sway measurements for a static standing task: the effect of age. Front Physiol. 2022;13. doi: 10.3389/fphys.2022.850707
  18. Wang Z, Molenaar PCM, Newell KM. The effects of foot position and orientation on inter- and intra-foot coordination in standing postures: a frequency domain PCA analysis. Exp Brain Res. 2013;230(1):15–27. doi: 10.1007/s00221-013-3627-9
  19. Pérez-Belloso AJ, Coheña-Jiménez M, Cabrera-Domínguez ME, et al. Influence of dental malocclusion on body posture and foot posture in children: a cross-sectional study. Healthcare. 2020;8(4):485. doi: 10.3390/healthcare8040485
  20. Amaricai E, Onofrei RR, Suciu O, et al. Do different dental conditions influence the static plantar pressure and stabilometry in young adults? PLoS One. 2020;15. doi: 10.1371/journal.pone.0228816
  21. Isaia B, Ravarotto M, Finotti P, et al. Analysis of dental malocclusion and neuromotor control in young healthy subjects through new evaluation tools. J Funct Morphol Kinesiol. 2019;(4):5. doi: 10.3390/jfmk4010005
  22. Julià-Sánchez S, Álvarez-Herms J, Cirer-Sastre R, et al. The influence of dental occlusion on dynamic balance and muscular tone. Front Physiol. 2020;10:1626. doi: 10.3389/fphys.2019.01626
  23. Piancino MG, Dalmasso P, Borello F, et al. Thoracic-lumbar-sacral spine sagittal alignment and cranio-mandibular morphology in adolescents. J Electromyogr Kinesiol. 2019;48:169–175. doi: 10.1016/j.jelekin.2019.07.016
  24. Michalakis KX, Kamalakidis SN, Pissiotis AL, et al. The effect of clenching and occlusal instability on body weight distribution, assessed by a postural platform. BioMed Res Int. 2019;2019. doi: 10.1155/2019/7342541
  25. Nowak M, Golec J, Wieczorek A, et al. Is there a correlation between dental occlusion, postural stability and selected gait parameters in adults? Int J Environ Res Public Health. 2023;20(2):1652. doi: 10.3390/ijerph20021652
  26. Bugrovetskaya OG, Maksimova EA, Kim KS. Differential diagnostics of pathways of the development of postural disorders in case of the TMJ dysfunction (a posturological study). Manual therapy. 2016;61(1):3–13. (In Russ.)
  27. Chiba R, Takakusaki K, Ota J, et al. Human upright posture control models based on multisensory inputs; in fast and slow dynamics. Neurosci Res. 2016;104:96–104. doi: 10.1016/j.neures.2015.12.002
  28. Le Ray D, Guayasamin M. How does the central nervous system for posture and locomotion cope with damage-induced neural asymmetry? Front Syst Neurosci. 2022;16. doi: 10.3389/fnsys.2022.828532
  29. Mejerz SP. Differencial’naja diagnostika v nejrovizualizacii. Pozvonochnik i spinnoj mozg. Moscow: MEDpress-inform, 2020. 288 p. (In Russ.)
  30. Trenga AP, Singla A, Feger MA, et al. Patterns of congenital bony spinal deformity and associated neural anomalies on X-ray and magnetic resonance imaging. J Child Orthop. 2016;10(4):343–352. doi: 10.1007/s11832-016-0752-6
  31. Ivanov VV, Achkasov EE, Markov NM, et al. Changes of postural statusa in patients undergoing orthodontic treatment. Stomatologiia. 2018;97(1):50–53. (In Russ.) doi: 10.17116/stomat201897150-53.
  32. Oliveira SSI, Pannuti CM, Paranhos KS, et al. Effect of occlusal splint and therapeutic exercises on postural balance of patients with signs and symptoms of temporomandibular disorder. Clin Exp Dent Res. 2019;5:109–115. doi: 10.1002/cre2.136
  33. Dotsenko VI, Usachev VI. Stabilometriya v diagnostike postural’nykh narusheniy v klinicheskoy praktike: vektornyy analiz statokineziogrammy. Raabilitatsiya. 2018;17(2):13–15. (In Russ.)
  34. Shiller DM, Veilleux LN, Marois M, et al. Sensorimotor adaptation of whole-body postural control. Neuroscience. 2017;356:217–228. doi: 10.1016/j.neuroscience.2017.05.029
  35. Ferrillo M, Marotta N, Giudice A, et al. Effects of occlusal splints on spinal posture in patients with temporomandibular disorders: a systematic review. Healthcare. 2022;10(4):739. doi: 10.3390/healthcare10040739
  36. Kurchaninova MG, Skvortsov DV, Baklushin AE, et al. The influence of disturbed functions of the temporomandibular joint on postural balance. Lechebnaya fizkul’tura i sportivnaya meditsina. 2016;137(5):46–50. (In Russ.)
  37. Feng CZ, Li JF, Hu N, et al. Brain activation patterns during unilateral premolar occlusion. Cranio. 2019;37(1):53–59. doi: 10.1080/08869634.2017.1379259
  38. El Zoghbi A, Halimi M, Hobeiche J, et al. Effect of occlusal splints on posture balance in patients with temporomandibular joint disorder: a prospective study. J Contemp Dent Pract. 2021;22(6):615–619.
  39. Nikityuk IE, Kononova EL, Ikoeva GA, et al. Influence of robotic mechanotherapy in various combinations with non-invasive electrostimulation of muscles and spinal cord on the postural balance in children with severe forms of cerebral palsy. Bulletin of Rehabilitation Medicine. 2020;4(98):26–34. (In Russ.) doi: 10.38025/2078-1962-2020-98-4-26-34
  40. Piancino MG, Dalmasso P, Borello F, et al. Thoracic-lumbar-sacral spine sagittal alignment and cranio-mandibular morphology in adolescents. J Electromyogr Kinesiol. 2019;48:169–175. doi: 10.1016/j.jelekin.2019.07.016

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Multispiral computed tomography of patient K, 17 years old (preoperatively, study group): volumetric visualization (a, b); axial section (c); multiplanar reconstructions in the sagittal (d) and frontal (e) planes. A combined maxillofacial anomaly and mesial malocclusion with malformation of the cervical spine and craniovertebral junction: basilar impression with clivus hypoplasia and cranial insertion of the apex of the axis tooth, complete blockage of CII–III, right-sided atlanto-occipital assimilation, and nonenlargement of the posterior arch of the atlas

下载 (301KB)
3. Fig. 2. Multispiral computed tomography of patient B, 16 years old (preoperatively, control group): volumetric visualization (a) and multiplanar reconstructions in the sagittal (b) and frontal (c) planes, demonstrating a combined maxillofacial anomaly and mesial malocclusion without pathology of the cervical spine and craniovertebral junction

下载 (140KB)
4. Fig. 3. Bilateral stabilometry using the two-platform method: a, registration of trajectories of movement of the centers of pressure; b, scheme of the subject’s foot placement. TCOP, total body center of pressure; COPL, center of pressure of the left foot; COPR, center of pressure of the right foot; X, displacement of TCOP in the frontal plane; ΔY, difference in displacement between the centers of pressure of contralateral lower extremities in the sagittal plane

下载 (159KB)
5. Fig. 4. Graphical representation of the displacement of the centers of pressure (COP) of healthy children and patients before surgery: a, diagram of the body COP displacement in the frontal plane; b, diagram of 95% intervals of the mean values of the COP displacement of the contralateral lower extremities in the sagittal plane. L and R, left and right lower extremities

下载 (121KB)
6. Fig. 5. Examples of the dependence of the general center of pressure trajectory direction on the coefficient of sudden change in the direction of movement (SCC): a, in a healthy child; b, in a control group patient without cervical spine anomalies before and after surgery; c, in a study group patient with cervical spine anomalies pre- and postoperatively

下载 (445KB)
7. Fig. 6. Asymmetry of the statokinesiograms of contralateral lower extremities: a, in a healthy child (ΔS = 0.1 mm2); b, in a control group patient without anomalies of the cervical spine before surgery (ΔS = 0.6 mm2); c, in a study group patient with anomalies of the cervical spine before surgery (ΔS = 8.2 mm2). Red, separate statokinesiograms; blue and yellow, combined statokinesiograms

下载 (251KB)

版权所有 © Эко-Вектор, 2023

许可 URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-54261 от 24 мая 2013 г.


##common.cookie##