自体脂肪来源间充质干细胞在实验动物透明软骨缺损治疗中的应用(文献综述)
- 作者: Pershina P.A.1, Novosad Y.A.1,2, Rodionova K.N.1,2, Asadulaev M.S.1, Zorin V.I.3, Bortulev P.I.3, Vissarionov S.V.3
-
隶属关系:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Peter the Great Saint Petersburg Polytechnic University
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
- 期: 卷 12, 编号 4 (2024)
- 页面: 499-510
- 栏目: Scientific reviews
- ##submission.dateSubmitted##: 11.09.2024
- ##submission.dateAccepted##: 11.11.2024
- ##submission.datePublished##: 15.12.2024
- URL: https://journals.eco-vector.com/turner/article/view/635941
- DOI: https://doi.org/10.17816/PTORS635941
- ID: 635941
如何引用文章
详细
背景。软骨组织的退行性疾病是现代创伤学和骨科领域中具有重要流行病学意义的问题。软骨缺损修复的困难在于软骨组织的低再生能力,而使用自体间充质干细胞修复软骨缺损被认为是当前研究中最具前景的方向之一。
研究目的。综述文献中关于脂肪来源间充质干细胞在实验动物软骨缺损修复中的应用研究。
材料与方法。本文基于过去20年的俄文和英文文献,使用关键词在 Google Scholar、Ciberleninka、 PubMed、eLibrary、Mendeley 和 Science Direct 等数据库中进行检索。共筛选出113篇文献,并从中挑选出25篇符合纳入标准的全文和摘要研究进行分析。
结果。文献数据显示,自体脂肪来源间充质干细胞在透明软骨缺损修复中能够促进再生。在绝大多数研究中,无论基质载体或凝胶的组成如何,添加分化或未分化细胞均可显著加速软骨组织修复过程。此外,脂肪来源间充质干细胞还可作为一种独立技术,无需载体直接应用于治疗。
结论。尽管已有多种技术、手术方法和材料用于修复软骨缺损,目前尚未找到能够完全再生软骨组织的理想移植物。然而,脂肪来源间充质干细胞在实验研究中表现出显著的再生潜力,能够加速软骨缺损修复,并可能成为治疗软骨退行性疾病的新策略。进一步研究应集中于临床转化应用, 以验证其在人体软骨修复中的安全性和有效性。
全文:

作者简介
Polina A. Pershina
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
编辑信件的主要联系方式.
Email: polinaiva2772@gmail.com
ORCID iD: 0000-0001-5665-3009
SPIN 代码: 2484-9463
MD, PhD Student
俄罗斯联邦, Saint PetersburgYuri A. Novosad
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Peter the Great Saint Petersburg Polytechnic University
Email: novosad.yur@yandex.ru
ORCID iD: 0000-0002-6150-374X
SPIN 代码: 3001-1467
MD, PhD Student
俄罗斯联邦, Saint Petersburg; Saint PetersburgKristina N. Rodionova
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Peter the Great Saint Petersburg Polytechnic University
Email: rkn0306@mail.ru
ORCID iD: 0000-0001-6187-2097
SPIN 代码: 4627-3979
俄罗斯联邦, Saint Petersburg; Saint Petersburg
Marat S. Asadulaev
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN 代码: 3336-8996
MD, PhD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgVyacheslav I. Zorin
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: traumaturner@yandex.ru
ORCID iD: 0000-0002-9712-5509
SPIN 代码: 4651-8232
MD, PhD, Cand. Sci. (Medicine), Associate Professor
俄罗斯联邦, Saint PetersburgPavel I. Bortulev
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: pavel.bortulev@yandex.ru
ORCID iD: 0000-0003-4931-2817
SPIN 代码: 9903-6861
MD, PhD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgSergey V. Vissarionov
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN 代码: 7125-4930
MD, PhD, Dr. Sci. (Medicine), Professor, Corresponding Member of the RAS
俄罗斯联邦, Saint Petersburg参考
- Runhaar J. Development and prevention of knee osteoarthritis: the load of obesity. Rotredame: Erasmus university; 2013. Available from: https://core.ac.uk/download/pdf/18511861.pdf
- Ezhov MY, Ezhov IY, Kashko AK, et al. Unresolved issues of the cartilage and the bone regeneration (review). Advances in current natural sciences. 2015;(5):126–131. (In Russ.) EDN: UCMJHT
- Xu Y, Jiang Y, Xia C, et al. Stem cell therapy for osteonecrosis of femoral head: opportunities and challenges. Regen Ther. 2020;15:295–304. doi: 10.1016/j.reth.2020.11.003
- Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–895. doi: 10.1056/nejm199410063311401
- Mobasheri A, Kalamegam G, Musumeci G, et al. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas. 2014;78(3):188–198. doi: 10.1016/j.maturitas.2014.04.017
- Mistry H, Connock M, Pink J, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess (Rockv). 2017;21(6):1–294. doi: 10.3310/hta21060
- Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic transplants of bone marrow. Transplantation. 1968;6(2):230–247. doi: 10.1097/00007890-196803000-00009
- Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. 2011;29(1):5–10. doi: 10.1002/stem.556
- Xie X, Wang Y, Zhao C, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33(29):7008–7018. doi: 10.1016/j.biomaterials.2012.06.058
- Steck E, Bertram H, Abel R, et al. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells. 2005;23(3):403–411. doi: 10.1634/stemcells.2004-0107
- Peláez P, Damiá E, Torres-Torrillas M, et al. Cell and cell free therapies in osteoarthritis. Biomedicines. 2021;9(11):1726. doi: 10.3390/biomedicines9111726
- Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–4295. doi: 10.1091/mbc.e02-02-0105
- Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–1301. doi: 10.1634/stemcells.2005-0342
- Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905
- Anraku Y, Mizuta H, Sei A, et al. The chondrogenic repair response of undifferentiated mesenchymal cells in rat full-thickness articular cartilage defects. Osteoarthr Cartil. 2008;16(8):961–964. doi: 10.1016/j.joca.2007.12.009
- Wang W, He N, Feng C, et al. Human adipose-derived mesenchymal progenitor cells engraft into rabbit articular cartilage. Int J Mol Sci. 2015;16(6):12076–12091. doi: 10.3390/ijms160612076
- Brindo da Cruz IC, Velosa AP, Carrasco S, et al. Post-adipose-derived stem cells (ADSC) stimulated by collagen type V (Col V) mitigate the progression of osteoarthritic rabbit articular cartilage. Front Cell Dev Biol. 2021;9:606890. doi: 10.3389/fcell.2021.606890
- Ude CC, Sulaiman SB, Min-Hwei N, et al. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PLoS One. 2014;9(6):e98770. doi: 10.1371/journal.pone.0098770
- Desando G, Cavallo C, Sartoni F, et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther. 2013;15:1–16. doi: 10.1186/ar4156
- Ahmad MR, Badar W, Ullah Khan MA, et al. Combination of preconditioned adipose-derived mesenchymal stem cells and platelet-rich plasma improves the repair of osteoarthritis in rat. Regen Med. 2020;15(11):2285–2295. doi: 10.2217/rme-2020-0040
- Hsu YK, Sheu SY, Wang CY, et al. The effect of adipose-derived mesenchymal stem cells and chondrocytes with platelet-rich fibrin releasates augmentation by intra-articular injection on acute osteochondral defects in a rabbit model. Knee. 2018;25(6):1181–1191. doi: 10.1016/j.knee.2018.10.005
- Kuroda K, Kabata T, Hayashi K, et al. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskelet Disord. 2015;16(1). doi: 10.1186/s12891-015-0701-4
- Fu Q, Zhou R, Cao J, et al. Culture of mesenchymal stem cells derived from the infrapatellar fat pad without enzyme and preliminary study on the repair of articular cartilage defects in rabbits. Front Bioeng Biotechnol. 2022;10:889306. doi: 10.3389/fbioe.2022.889306
- Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52(1):443–451. doi: 10.1146/annurev.med.52.1.443
- Vannini F, Filardo G, Kon E, et al. Scaffolds for cartilage repair of the ankle joint: the impact on surgical practice. Foot Ankle Surg. 2013;19(1):2–8. doi: 10.1016/j.fas.2012.07.001
- Chang SCN, Rowley JA, Tobias G, et al. Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J Biomed Mater Res. 2001;55(4):503–511. doi: 10.1002/1097-4636(20010615)55:4<503::aid-jbm1043>3.0.co;2-s
- Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality. Adv Mater. 2022;34(2):2103691. doi: 10.1002/adma.202103691
- Hung CT, Lima EG, Mauck RL, et al. Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech. 2003;36(12):1853–1864. doi: 10.1016/s0021-9290(03)00213-6
- Lee CH, Cook JL, Mendelson A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376(9739):440–448. doi: 10.1016/s0140-6736(10)60668-x
- Yang Z, Li H, Tian Y, et al. Biofunctionalized structure and ingredient mimicking scaffolds achieving recruitment and chondrogenesis for staged cartilage regeneration. Front Cell Dev Biol. 2021;9:655440. doi: 10.3389/fcell.2021.655440
- Yang ZG, Tang RF, Qi YY, et al. Restoration of cartilage defects using a superparamagnetic iron oxide-labeled adipose-derived mesenchymal stem cell and TGF-β3-loaded bilayer PLGA construct. Regen Med. 2020;16(6):1735–1747. doi: 10.2217/rme-2019-0151
- Lee Y-H, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab. 2013;18(3):355–367. doi: 10.1016/j.cmet.2013.08.003
- Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–648. doi: 10.1016/j.jcyt.2013.02.006
- Desando G, Bartolotti I, Martini L, et al. Regenerative features of adipose tissue for osteoarthritis treatment in a rabbit model: enzymatic digestion versus mechanical disruption. Int J Mol Sci. 2019;20(11):2636. doi: 10.3390/ijms20112636
- Chen Z, Ge Y, Zhou L, et al. Pain relief and cartilage repair by Nanofat against osteoarthritis: preclinical and clinical evidence. Stem Cell Res Ther. 2021;12(1):477. doi: 10.1186/s13287-021-02538-9
- Ge Y, Xu W, Chen Z, et al. Nanofat lysate ameliorates pain and cartilage degradation of osteoarthritis through activation of TGF-β–Smad2/3 signaling of chondrocytes. Front Pharmacol. 2023;14:900205. doi: 10.3389/fphar.2023.900205
- Li Q, Zhao F, Li Z, et al. Autologous fractionated adipose tissue as a natural biomaterial and novel one-step stem cell therapy for repairing articular cartilage defects. Front Cell Dev Biol. 2020;8:694. doi: 10.3389/fcell.2020.00694
- Upchurch DA, Renberg WC, Roush JK, et al. Effects of administration of adipose-derived stromal vascular fraction and platelet-rich plasma to dogs with osteoarthritis of the hip joints. Am J Vet Res. 2016;77(9):940–951. doi: 10.2460/ajvr.77.9.940
- Ba K, Ni D, Wang XB, et al. Chondrocyte cocultures with stromal vascular fraction of adipose tissue promote cartilage regeneration in vivo. Hua Xi Kou Qiang Yi Xue Za Zhi. 2020;38(3):240–244. doi: 10.7518/hxkq.2020.03.002
- Go G, Jeong SG, Yoo A, et al. Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo. Sci Robot. 2020;5(38):eaay6626. doi: 10.1126/scirobotics.aay6626
补充文件
