Post-COVID syndrome in urological practice

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review article examines the impact of the SARS-CoV-2 coronavirus on the urinary system, as well as on men’s health. Data on aspects of pathogenesis and features of the course of a new coronavirus infection are presented. Possible risk factors for contracting a new coronavirus infection associated with an abundance of angiotensin-converting enzyme-2 (ACE2) receptors in the kidneys and urinary tract, to which SARS-CoV-2 has an affinity, are considered. The article provides an extensive range of studies that provide convincing evidence for the presence of changes in the spermogram of patients who have undergone COVID-19. Works demonstrating gender differences in the incidence of COVID-19 and concomitant diseases are presented. The literature review considers both direct and indirect factors (oxidative stress, cytokine storm, decreased libido), through which coronavirus infection negatively affects male sexual health.

Full Text

Restricted Access

About the authors

Andrey V. Kuzmenko

Burdenko Voronezh State Medical University

Email: kuzmenkoav09@yandex.ru
ORCID iD: 0000-0002-7927-7015
SPIN-code: 6981-7490
Scopus Author ID: 7003998310
http://vrngmu.ru/academy/personnel/978/

Dr. Sci. (Med), Professor, Head of the Department of Urology

Russian Federation, 10, Studencheskaya st., Voronezh, 394036

Daria A. Petrova

Burdenko Voronezh State Medical University

Email: dariapetrova.29.07@gmail.com
ORCID iD: 0000-0002-9640-1399
SPIN-code: 6536-2553

Student

Russian Federation, 10, Studencheskaya st., Voronezh, 394036

Timur А. Gyaurgiev

Burdenko Voronezh State Medical University

Author for correspondence.
Email: tima001100@mail.ru
ORCID iD: 0000-0002-6261-3641
SPIN-code: 8050-7190

Cand. Sci. (Med.), Associate Professor of the Department of Urology

Russian Federation, 10, Studencheskaya st., Voronezh, 394036

References

  1. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020 (2020). [Internet] Available at: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
  2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–534. doi: 10.1016/S1473-3099(20)30120-1
  3. Shchelkanov MY, Popova AY, Dedkov VG, et al. History of investigation and current classification of coronaviruses (Nidovirales: Coronaviridae). Russian Journal of Infection and Immunity. 2020. Vol. 10, No. 2. P. 221–246. (In Russ.) doi: 10.15789/2220-7619-HOI-1412
  4. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for disease control and prevention. JAMA. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648
  5. Lauer SA, Grantz KH, Bi Q, et al. The Incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577–582. doi: 10.7326/M20-0504
  6. Khaitovich AB, Yermachkova PA. Coronaviruses (genome structure, replication). Crimean Journal of Experimental and Clinical Medicine. 2021;11(1):61–75 (In Russ.) doi: 10.37279/2224-6444-2021-11-1-61-75
  7. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562–569. doi: 10.1038/s41564-020-0688-y
  8. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052
  9. Jin P, Park H, Jung S, Kim J. Challenges in urology during the COVID-19 pandemic. Urol Int. 2021;105(1–2):3–16. doi: 10.1159/000512880
  10. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185–192. doi: 10.1007/s11684-020-0754-0
  11. Chu KH, Tsang WK, Tang CS, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67(2):698–705. doi: 10.1111/j.1523-1755.2005.67130.x
  12. Novitskiy AV, Chetverikov AV, Lankov VA, et al. COVID-19 associated incrusting cystitis. Experimental and Clinical Urology. 2021;14(4):108–112. (In Russ.) doi: 10.29188/2222-8543-2021-14-4-108-112
  13. Farsimadan M, Motamedifar M. Bacterial infection of the male reproductive system causing infertility. J Reprod Immunol. 2020;142:103183. doi: 10.1016/j.jri.2020.103183
  14. La Vignera S, Condorelli RA, Vicari E, et al. Microbiological investigation in male infertility: a practical overview. J Med Microbiol. 2014;63(Pt 1):1–14. doi: 10.1099/jmm.0.062968-0
  15. Dejucq N, Jégou B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev. 2001;65(2):208–231. doi: 10.1128/MMBR.65.2.208-231.2001
  16. Zhao S, Zhu W, Xue S, Han D. Testicular defense systems: immune privilege and innate immunity. Cell Mol Immunol. 2014;11(5): 428–437. doi: 10.1038/cmi.2014.38
  17. Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, leydig and sertoli cells. Cells. 2020;9(4):920. doi: 10.3390/cells9040920
  18. Verma S, Saksena S, Sadri-Ardekani H. ACE2 receptor expression in testes: implications in coronavirus disease 2019 pathogenesis. Biol Reprod. 2020;103(3):449–451. doi: 10.1093/biolre/ioaa080
  19. Alkhatatbeh H, Alzaghari D, Alkhashman A, et al. Does severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cause orchitis in patients with coronavirus disease 2019 (COVID-19)? Arab J Urol. 2020;18(3):129–133. doi: 10.1080/2090598X.2020.1798862
  20. Chen L, Huang X, Yi Z, et al. Ultrasound imaging findings of acute testicular infection in patients with coronavirus disease 2019: a single-center-based study in Wuhan, China. J Ultrasound Med. 2021;40(9):1787–1794. doi: 10.1002/jum.15558
  21. Derevyanko TI, Pridchin SV. Hemorrhagic testicular infarction as a complication of COVID-19 (SARS-CoV-2) clinical case. Experimental and Clinical Urology, 2021;14(2):70–72. (In Russ.) doi: 10.29188/2222-8543-2021-14-2-70-72
  22. Patel DP, Punjani N, Guo J, et al. The impact of SARS-CoV-2 and COVID-19 on male reproduction and men’s health. Fertil Steril. 2021;115(4):813–823. doi: 10.1016/j.fertnstert.2020.12.033
  23. Liu X, Chen Y, Tang W, et al. Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Sci China Life Sci. 2020;63(7):1006–1015. doi: 10.1007/s11427-020-1705-0
  24. Xu J, Qi L, Chi X, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod. 2006;74(2):410–416. doi: 10.1095/biolreprod.105.044776
  25. Flaifel A, Guzzetta M, Occidental M, et al. Testicular changes associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Arch Pathol Lab Med. 2021;145(1):8–9. doi: 10.5858/arpa.2020-0487-LE
  26. Rozenberg S, Vandromme J, Martin C. Are we equal in adversity? Does COVID-19 affect women and men differently? Maturitas. 2020;138:62–68. doi: 10.1016/j.maturitas.2020.05.009
  27. Berletch JB, Yang F, Xu J, et al. Genes that escape from X inactivation. Hum Genet. 2011;130(2):237–245. doi: 10.1007/s00439-011-1011-z
  28. Chen YW, Lee MS, Lucht A, et al. TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am J Pathol. 2010;176(6):2986–2996. doi: 10.2353/ajpath.2010.090665
  29. Ibishev KhS, Atadzhanova AT, Mamedov EA, Vasilyev ON. The significance of coronavirus infection in the development of reproductive and lower urinary tract lesions. Vestn Urol. 2021;9(2):125–131. (In Russ.) doi: 10.21886/2308-6424-2021-9-2-125-131
  30. Montopoli M, Zumerle S, Vettor R, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann Oncol. 2020;31(8): 1040–1045. doi: 10.1016/j.annonc.2020.04.479
  31. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev. 2008;1(1):15–24. doi: 10.4161/oxim.1.1.6843
  32. Selvaraj K, Ravichandran S, Krishnan S, et al. Testicular atrophy and hypothalamic pathology in COVID-19: possibility of the incidence of male infertility and HPG axis abnormalities. Reprod Sci. 2021;28(10):2735–2742. doi: 10.1007/s43032-020-00441-x
  33. Moghimi N, Eslami Farsani B, Ghadipasha M, et al. COVID-19 disrupts spermatogenesis through the oxidative stress pathway following induction of apoptosis. Apoptosis. 2021;26(7–8):415–430. doi: 10.1007/s10495-021-01680-2
  34. Döring N. How Is the COVID-19 pandemic affecting our sexualities? An overview of the current media narratives and research hypotheses. Arch Sex Behav. 2020;49(8):2765–2778. doi: 10.1007/s10508-020-01790-z
  35. Abbas AM, Fathy SK, Khamees AA, et al. A focused review on the genital and sexual affection of COVID-19 patients. J Gynecol Obstet Hum Reprod. 2020;49(8):101848. doi: 10.1016/j.jogoh.2020.101848
  36. Li G, Tang D, Song B, et al. Impact of the COVID-19 pandemic on partner relationships and sexual and reproductive health: cross-sectional, online survey study. J Med Internet Res. 2020;22(8):e20961. doi: 10.2196/20961

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ №ФС77-65570 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies