A modern view of the processes of mechanotransduction in healthy and damaged skin: review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Questions concerning the study of mechanotransduction in the skin are currently of interest to many researchers, especially those engaged in the study of the problem of high-quality surgical treatment of soft tissue wounds. The possibility of developing new ways of treating various pathologies of the integumentary tissues, including wound defects, depends on understanding the processes of transmission and transformation of mechanical stimuli coming to skin cells into chains of biochemical reactions. The review presents the main historical stages of the development of scientific knowledge about mechanotransduction, describes the features of mechanotransduction in integumentary tissues, currently known mediators and signaling pathways that realize the transmission of mechanical influences from the cell surface to its nucleus, and also suggests possible directions for using this phenomenon in practice. The work also noted changes occurring at the cellular level during the “recoding” of mechanical signals in wounds prone to slowing down natural healing processes — chronic wounds. We believe that one of the promising trends in the practical application of mechanotransduction is the possibility of using its effects when stretching the skin during the treatment of wound defects of soft tissues.

Full Text

Restricted Access

About the authors

Ilya V. Pavlenko

University Clinic of the Privolzhsky Research Medical University

Email: ilyapavlenko@bk.ru
ORCID iD: 0000-0003-0509-5988
SPIN-code: 1549-3861

MD, Cand. Sci. (Med.)

Russian Federation, Nizhny Novgorod

Vitaliy N. Gostev

University Clinic of the Privolzhsky Research Medical University

Email: combustiolog@mail.ru
ORCID iD: 0000-0002-7028-4438

MD

Russian Federation, Nizhny Novgorod

Kirill V. Andriukhin

University Clinic of the Privolzhsky Research Medical University

Author for correspondence.
Email: andrychin@mail.ru

студент 4 курса

Russian Federation, 10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603005

References

  1. Ermakov AS. The theory of tensegrity and spatial organization of living matter. Russian Journal of Developmental Biology. 2018;49(2):87–100. doi: 10.1134/S1062360418020030
  2. Brézulier D, Pellen-Mussi P, Sorel O, Jeanne S. La mécanobiologie osseuse, un domaine émergeant: revue de littérature [Bone mechanobiology, an emerging field: a review]. Orthod Fr. 2018;89(4):343–353. (In French). doi: 10.1051/orthodfr/2018034
  3. Uzer G, Fuchs RK, Rubin J, Thompson WR. Concise review: plasma and nuclear membranes convey mechanical information to regulate mesenchymal stem cell lineage. Stem Cells. 2016;34(6):1455–1463. doi: 10.1002/stem.2342
  4. Potekhina YuP, Filatova AI, Tregubova ES, Mokhov DE. Mechanosensitivity of various cells: a possible role in the regulation and realization of the effects of physical methods of treatment [review]. Modern technologies in medicine. 2020.12(4):77–90. (In Russ.). doi: 10.17691/stm2020.12.4.10
  5. Unsere Körperform und das physiologische Problem ihrer Entstehung. Lpz.; 1874.
  6. Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald; 1892.
  7. Serov VV, Shekhter AB. Connective tissue. Moscow: Medicine; 1981. (In Russ.)
  8. Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003;116(Pt 7):1157–1173. doi: 10.1242/jcs.00359
  9. Beloussov LV, Grabovsky VI. Morphomechanics: goals, basic experiments and models. Int J Dev Biol. 2006;50(2–3):81–92. doi: 10.1387/ijdb.052056lb
  10. Ingber DE, Wang N, Stamenovic D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep Prog Phys. 2014;77(4):046603. doi: 10.1088/0034-4885/77/4/046603
  11. Hamant O, Inoue D, Bouchez D, et al. Are microtubules tension sensors? Nat Commun. 2019;10(1):2360. doi: 10.1038/s41467-019-10207-y
  12. Beloussov LV, Lakirev AV, Naumidi II, Novoselov VV. Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopus laevis embryos. Int J Dev Biol. 1990;34(4):409–419.
  13. Beloussov LV, Luchinskaya NN, Ermakov AS, Glagoleva NS. Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events. Int J Dev Biol. 2006;50(2–3):113–122. doi: 10.1387/ijdb.052057lb
  14. Beloussov LV. Morphomechanics of Development. Springer; 2015. doi: 10.1007/978-3-319-13990-6
  15. Farge E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol. 2003;13(16):1365–1377. doi: 10.1016/s0960-9822(03)00576-1
  16. Mitrossilis D, Röper JC, Le Roy D, et al. Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation. Nat Commun. 2017;8:13883. doi: 10.1038/ncomms13883
  17. Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–183. doi: 10.1038/nature10137
  18. Aragona M, Sifrim A, Malfait M, et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature. 2020;584(7820):268–273. doi: 10.1038/s41586-020-2555-7
  19. Parshikov VV, Loginov VI, Baburin AB, Kasimov RR. A half-century path of development of prevention of infectious complications in postoperative wounds. Medical Bulletin of Bashkortostan. 2017;12(1(67)):82–93. (In Russ.)
  20. Bishop JE, Rhodes S, Laurent GJ, et al. Increased collagen synthesis and decreased collagen degradation in right ventricular hypertrophy induced by pressure overload. Cardiovasc Res. 1994;28(10):1581–1585. doi: 10.1093/cvr/28.10.1581
  21. Joodaki H, Panzer MB. Skin mechanical properties and modeling: A review. Proc Inst Mech Eng H. 2018;232(4):323–343. doi: 10.1177/0954411918759801
  22. Huang C, Leavitt T, Bayer LR, Orgill DP. Effect of negative pressure wound therapy on wound healing. Curr Probl Surg. 2014;51(7):301–331. doi: 10.1067/j.cpsurg.2014.04.001
  23. Huang C, Holfeld J, Schaden W, et al. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med. 2013;19(9):555–564. doi: 10.1016/j.molmed.2013.05.005
  24. Dymarek R, Halski T, Ptaszkowski K, et al. Extracorporeal shock wave therapy as an adjunct wound treatment: a systematic review of the literature. Ostomy Wound Manage. 2014;60(7):26–39.
  25. Holbrook KA, Smith LT, Elias S. Prenatal diagnosis of genetic skin disease using fetal skin biopsy samples. Arch Dermatol. 1993;129(11):1437–1454.
  26. Petrov KB. The concept of myoviscerofascial connections of internal organs. Manual medicine. 1994;8:5–11. (In Russ.)
  27. Mohammed D, Versaevel M, Bruyère C, et al. Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Front Bioeng Biotechnol. 2019;7:162. doi: 10.3389/fbioe.2019.00162
  28. Marjoram RJ, Lessey EC, Burridge K. Regulation of RhoA activity by adhesion molecules and mechanotransduction. Curr Mol Med. 2014;14(2):199–208. doi: 10.2174/1566524014666140128104541
  29. Holbrook KA, Odland GF. Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J Invest Dermatol. 1974;62(4):415–422. doi: 10.1111/1523-1747.ep12701670
  30. Wang JH, Lin JS. Cell traction force and measurement methods. Biomech Model Mechanobiol. 2007;6(6):361–371. doi: 10.1007/s10237-006-0068-4
  31. Duscher D, Maan ZN, Wong VW, et al. Mechanotrans. duction and fibrosis. J Biomech. 2014;47(9):1997–2005. doi: 10.1016/j.jbiomech.2014.03.031
  32. Boeri L, Albani D, Raimondi MT, Jacchetti E. Mechanical regulation of nucleocytoplasmic translocation in mesenchymal stem cells: characterization and methods for investigation. Biophys Rev. 2019;11(5):817–831. doi: 10.1007/s12551-019-00594-3
  33. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. doi: 10.1126/scitranslmed.3009337
  34. Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 1999;18(5):417–426. doi: 10.1016/s0945-053x(99)00039-6
  35. Grinnell F. Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 2000;10(9):362–365. doi: 10.1016/s0962-8924(00)01802-x
  36. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 2003;13(5):264–269. doi: 10.1016/s0962-8924(03)00057-6
  37. Langer K. On the anatomy and physiology of the skin. I. The cleavability of the cutis. (Translated from Langer, K. (1861). Zur Anatomie und Physiologie der Haut. I. Uber die Spaltbarkeit der Cutis. Sitzungsbericht der Mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Academie der Wissenschaften, 44, 19.). Br J Plast Surg. 1978;31(1):3–8.
  38. Maksimova NV, Lyundup AV, Lubimov RO, et al. Pathophysiological aspects of wound healing in normal and diabetic foot. Vestn Ross Akad Med Nauk. 2014;(11–12):110–117. (In Russ.). doi: 10.15690/vramn.v69i11-12.1192
  39. Komelyagina EYu, Antsiferov MB. Features of wound healing in patients with diabetic foot syndrome. Endocrinology: News. Opinions. Training. 2018;7(4):42–47. (In Russ.). doi: 10.24411/2304-9529-2018-14005
  40. Gurtner GC, Dauskardt RH, Wong VW, et al. Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann Surg. 2011;254(2):217–225. doi: 10.1097/SLA.0b013e318220b159
  41. Rosińczuk J, Taradaj J, Dymarek R, Sopel M. Mechanoregulation of wound healing and skin homeostasis. Biomed Res Int. 2016;2016:3943481. doi: 10.1155/2016/3943481
  42. Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63–73. doi: 10.1038/nrm2597
  43. Pyatakov SN, Porkhanov VA, Bensman VM, et al. Study of the clinical efficacy of the method of metered tissue destruction in the treatment of soft tissue defects of various etiologies in the lower extremities. Innovative medicine of Kuban. 2019;14(2):36–44. (In Russ.). doi: 10.35401/2500-0268-2019-14-2-36-44
  44. Kenny FN, Connelly JT. Integrin-mediated adhesion and mechano-sensing in cutaneous wound healing. Cell Tissue Res. 2015;360(3):571–582. doi: 10.1007/s00441-014-2064-9
  45. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006;20(7):811–827. doi: 10.1096/fj.05-5424rev
  46. Sukharev S, Betanzos M, Chiang CS, Guy HR. The gating mechanism of the large mechanosensitive channel MscL. Nature. 2001;409(6821):720–724. doi: 10.1038/35055559
  47. Liarte S, Bernabé-García Á, Nicolás FJ. Role of TGF-β in skin chronic wounds: A keratinocyte perspective. Cells. 2020;9(2):306. doi: 10.3390/cells9020306
  48. Walton KL, Johnson KE, Harrison CA. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front Pharmacol. 2017;8:461. doi: 10.3389/fphar.2017.00461
  49. Coentro JQ, May U, Prince S, et al. Adapting the Scar-in-a-Jar to skin fibrosis and screening traditional and contemporary anti-fibrotic therapies. Front Bioeng Biotechnol. 2021;9:756399. doi: 10.3389/fbioe.2021.756399
  50. Santiago B, Gutierrez-Cañas I, Dotor J, et al. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J Invest Dermatol. 2005;125(3):450–455. doi: 10.1111/j.0022-202X.2005.23859.x
  51. Buscemi L, Ramonet D, Klingberg F, et al. The single-molecule mechanics of the latent TGF-β1 complex. Curr Biol. 2011;21(24):2046–2054. doi: 10.1016/j.cub.2011.11.037
  52. Occleston NL, Laverty HG, O’Kane S, Ferguson MW. Prevention and reduction of scarring in the skin by Transforming Growth Factor beta 3 (TGFbeta3): from laboratory discovery to clinical pharmaceutical. J Biomater Sci Polym Ed. 2008;19(8):1047–1063. doi: 10.1163/156856208784909345
  53. Durani P, Occleston N, O’Kane S, Ferguson MW. Avotermin: a novel antiscarring agent. Int J Low Extrem Wounds. 2008;7(3):160–168. doi: 10.1177/1534734608322983
  54. Ferguson MW, Duncan J, Bond J, et al. Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet. 2009;373(9671):1264–1274. doi: 10.1016/S0140-6736(09)60322-6
  55. Wong VW, Rustad KC, Akaishi S, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med. 2011;18(1):148–152. doi: 10.1038/nm.2574
  56. Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011;63(8):610–615. doi: 10.1016/j.addr.2010.11.001
  57. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci. 2003;116(Pt 8):1409–1416. doi: 10.1242/jcs.00373
  58. David FS, Zage PE, Marcantonio EE. Integrins interact with focal adhesions through multiple distinct pathways. J Cell Physiol. 1999;181(1):74–82. doi: 10.1002/(SICI)1097-4652(199910)181:1<74::AID-JCP8>3.0.CO;2-H
  59. Ma K, Kwon SH, Padmanabhan J, et al. Controlled delivery of a focal adhesion kinase inhibitor results in accelerated wound closure with decreased scar formation. J Invest Dermatol. 2018;138(11):2452–2460. doi: 10.1016/j.jid.2018.04.034
  60. Jones AM, Griffiths JL, Sanders AJ, et al. The clinical significance and impact of interleukin 15 on keratinocyte cell growth and migration. Int J Mol Med. 2016;38(3):679–686. doi: 10.3892/ijmm.2016.2687
  61. Liu W, Ma K, Kwon SH, et al. The abnormal architecture of healed diabetic ulcers is the result of FAK degradation by calpain 1. J Invest Dermatol. 2017;137(5):1155–1165. doi: 10.1016/j.jid.2016.11.039
  62. Wong VW, Garg RK, Sorkin M, et al. Loss of keratinocyte focal adhesion kinase stimulates dermal proteolysis through upregulation of MMP9 in wound healing. Ann Surg. 2014;260(6):1138–1146. doi: 10.1097/SLA.0000000000000219
  63. Shan S, Fang B, Zhang Y, et al. Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway. FASEB J. 2019;33(12):13254–13266. doi: 10.1096/fj.201900799RR
  64. van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136(19):3205–3214. doi: 10.1242/dev.033910
  65. Сheon SS, Cheah AY, Turley S, et al. beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci USA. 2002;99(10):6973–6978. doi: 10.1073/pnas.102657399
  66. Bastakoty D, Young PP. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. FASEB J. 2016;30(10):3271–3284. doi: 10.1096/fj.201600502R
  67. Amini-Nik S, Cambridge E, Yu W, et al. β-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest. 2014;124(6):2599–2610. doi: 10.1172/JCI62059
  68. Duscher D, Maan ZN, Wong VW, et al. Mechanotransduction and fibrosis. J Biomech. 2014;47(9):1997–2005. doi: 10.1016/j.jbiomech.2014.03.031
  69. Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018;20(8):888–899. doi: 10.1038/s41556-018-0142-z
  70. Yano S, Komine M, Fujimoto M, et al. Activation of Akt by mechanical stretching in human epidermal keratinocytes. Exp Dermatol. 2006;15(5):356–361. doi: 10.1111/j.0906-6705.2006.00425.x
  71. Gao YL, Liu CS, Zhao R, et al. Effects of PI3K/Akt pathway in wound healing process of mice skin. Fa Yi Xue Za Zhi. 2016;32(1):7–12. (In Chinese)
  72. Lessey EC, Guilluy C, Burridge K. From mechanical force to RhoA activation. Biochemistry. 2012;51(38):7420–7432. doi: 10.1021/bi300758e
  73. Rahaman SO, Grove LM, Paruchuri S, et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J Clin Invest. 2014;124(12):5225–5238. doi: 10.1172/JCI75331
  74. Barnes LA, Marshall CD, Leavitt T, et al. Mechanical forces in cutaneous wound healing: emerging therapies to minimize scar formation. Adv Wound Care (New Rochelle). 2018;7(2):47–56. doi: 10.1089/wound.2016.0709
  75. Kuehlmann B, Bonham CA, Zucal I, et al. Mechanotransduction in wound healing and fibrosis. J Clin Med. 2020;9(5):1423. doi: 10.3390/jcm9051423
  76. Wong VW, Longaker MT, Gurtner GC. Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol. 2012;23(9):981–986. doi: 10.1016/j.semcdb.2012.09.010
  77. Rittié L. Cellular mechanisms of skin repair in humans and other mammals. J Cell Commun Signal. 2016;10(2):103–120. doi: 10.1007/s12079-016-0330-1
  78. Ehrlich HP, Hunt TK. Collagen Organization Critical Role in Wound Contraction. Adv Wound Care (New Rochelle). 2012;1(1):3–9. doi: 10.1089/wound.2011.0311
  79. Dunphy JЕ, Udupa KN. Chemical and histo-chemical sequences in the normal healing of wounds. N Engl J Med. 1955;253(20):847–852. doi: 10.1056/NEJM1955111725320028
  80. Gabbiani G, Ryan GB, Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 1971;27(5):549–550. doi: 10.1007/BF02147594
  81. Majno G, Gabbiani G, Hirschel BJ, et al. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science. 1971;173(3996):548–550. doi: 10.1126/science.173.3996.548
  82. Efimov EA. Post-traumatic skin regeneration: an experimental study. Moscow: Medicine; 1975. (In Russ.)
  83. Forrest L. Current concepts in soft connective tissue wound healing. Br J Surg. 1983;70(3):133–140. doi: 10.1002/bjs.1800700302
  84. Hunt TK. Basic principles of wound healing. J Trauma. 1990;30(12 Suppl):S122–S128. doi: 10.1097/00005373-199012001-00025
  85. Pathological physiology. Textbook. Ed. by A.D. Ado, V.V. Novitsky. Tomsk; 1994. (In Russ.)
  86. Kee JL, Paulanka BJ, Polek C. Handbook of fluid, electrolyte, and acid-base imbalances. 3rd ed. Cengage Learning; 2010.
  87. Nunikoshi J. Oxygen and wound healing. Clin Plast Surg. 1977;4(3):361–374.
  88. Hopf HW, Hunt TK. The role of oxygen in wound repair and wound infection. In: Musculoskeletal infection. Ed. by JL Esterhai, AG Gristina, R Poss. American Academy of Orthopaedic Surgeons; 1992. P. 329–339.
  89. Kimura S, Tsuji T. Mechanical and immunological regulation in wound healing and skin reconstruction. Int J Mol Sci. 2021;22(11):5474. doi: 10.3390/ijms22115474
  90. Fujishiro T, Nishikawa T, Shibanuma N, et al. Effect of cyclic mechanical stretch and titanium particles on prostaglandin E2 production by human macrophages in vitro. J Biomed Mater Res A. 2004;68(3):531–536. doi: 10.1002/jbm.a.20098
  91. Huang C, Miyazaki K, Akaishi S, et al. Biological effects of cellular stretch on human dermal fibroblasts. J Plast Reconstr Aesthet Surg. 2013;66(12):e351–e361. doi: 10.1016/j.bjps.2013.08.002
  92. Nowell CS, Odermatt PD, Azzolin L, et al. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat Cell Biol. 2016;18(2):168–180. doi: 10.1038/ncb3290
  93. Yano S, Komine M, Fujimoto M, et al. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J Invest Dermatol. 2004;122(3):783–790. doi: 10.1111/j.0022-202X.2004.22328.x
  94. Abe G, Hayashi T, Yoshida K, et al. Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration. Semin Cell Dev Biol. 2020;100:109–121. doi: 10.1016/j.semcdb.2019.11.014
  95. Harn HI, Ogawa R, Hsu CK, et al. The tension biology of wound healing. Exp Dermatol. 2019;28(4):464–471. doi: 10.1111/exd.13460
  96. Kimura S, Tsuchiya A, Ogawa M, et al. Tissue-scale tensional homeostasis in skin regulates structure and physiological function. Commun Biol. 2020;3(1):637. doi: 10.1038/s42003-020-01365-7
  97. Ulyanina AA. The method of acute and dosed tissue stretching in the plastic surgery of extensive wound defects of soft tissues [dissertation]. Moscow; 2006. (In Russ.)
  98. Mitish VA, Medinsky PV, Bagaev VG. Surgical treatment of an extensive scalped wound of the parietal-occipital region. Wounds and wound infections. The prof. B.M. Kostyuchenok Journal. 2021;8(1):42–49. (In Russ.). doi: 10.25199/2408-9613-2021-8-1-42-49
  99. Izmailov SG, Beschastnov VV. Hardware technique of wound suturing. Pirogov Russian Journal of Surgery. 2003;11:61. (In Russ.)
  100. Beschastnov VV, Orlinskaya NYu, Kudykin MN. Experimental and clinical justification of the use of dosed dermotension in the first phase of the wound process. Surgery News. 2012;20(2):55–59. (In Russ.)
  101. Martel II, Grebenyuk LA. Soft tissue defects of the foot supporting surface repaired with the ilizarov method under control of mechanical and biological condition of the skin. Polytrauma. 2018;1:39–46.
  102. Pyatakov SN, Zavrazhnov AA, Lukyanchenko IV, Ralko SN. Biophysical and pathogenetic substantiation of the application of the method of metered skin stretching in the treatment of extensive wound defects. Kuban Scientific Medical Bulletin. 2017;(1(162)):155–160. (In Russ.)
  103. Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003;116(Pt 7):1157–1173. doi: 10.1242/jcs.00359
  104. Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci. 2003;116(Pt 8):1397–1408. doi: 10.1242/jcs.00360
  105. Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10(1):21–33. doi: 10.1038/nrm2593
  106. Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017;18(12):758–770. doi: 10.1038/nrm.2017.87

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Pavlenko I.V., Gostev V.N., Andriukhin K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies