Endothelial dysfunction in axial spondyloarthritis associated with inflammatory bowel disease
- Authors: Marchenko V.N.1, Shchukina O.B.1, Davydov D.A.1, Bogacheva A.I.1, Banko V.V.1, Makarenko A.R.1
-
Affiliations:
- Pavlov First Saint Petersburg State Medical University
- Issue: Vol 14, No 4 (2022)
- Pages: 17-32
- Section: Reviews
- URL: https://journals.eco-vector.com/vszgmu/article/view/108408
- DOI: https://doi.org/10.17816/mechnikov108408
Cite item
Abstract
Spondyloarthritis is a group of musculoskeletal inflammatory diseases, including axial and peripheral forms. The current classification of these diseases emphasizes the diagnostic importance of the well-known association between spondyloarthritis and inflammatory bowel diseases (Crohn’s disease and ulcerative colitis). According to many large clinical studies, both spondyloarthritis and inflammatory bowel diseases demonstrate increased cardiovascular risk, but the underlying mechanisms are not entirely clear. One of the possible ways to involve the cardiovascular system in these diseases is supposed to be the formation of endothelial vascular dysfunction developing in many inflammatory and non-inflammatory conditions. At the same time, endothelial dysfunction needs to be analyzed multidimensionally due to its participation in regulation of many processes, such as the providing of vascular tone, cell migration, angiogenesis, and hemostasis.
This review examines the latest data on endothelial dysfunction in axial spondyloarthritis and inflammatory bowel diseases, and separately analyzes the studies of this phenomenon in patients with inflammatory bowel diseases-associated axial spondyloarthritis. Special attention is paid to modern laboratory and instrumental methods for assessing endothelial function and their potential diagnostic significance in clinical practice.
Full Text

About the authors
Valeriy N. Marchenko
Pavlov First Saint Petersburg State Medical University
Email: marchvn@mail.ru
ORCID iD: 0000-0002-2440-7222
SPIN-code: 1711-4150
Scopus Author ID: 57206419660
ResearcherId: ABE-4449-2020
MD, Dr. Sci. (Med.), Professor
Russian Federation, Saint PetersburgOksana B. Shchukina
Pavlov First Saint Petersburg State Medical University
Email: burmao@gmail.com
ORCID iD: 0000-0001-8402-0743
SPIN-code: 2733-9630
MD, Dr. Sci. (Med.), Professor
Russian Federation, Saint PetersburgDenis A. Davydov
Pavlov First Saint Petersburg State Medical University
Author for correspondence.
Email: davydov.rheum@gmail.com
ORCID iD: 0000-0002-5524-1616
SPIN-code: 1132-5294
Scopus Author ID: 57217159189
PhD student
Russian Federation, Saint PetersburgAnastasiya I. Bogacheva
Pavlov First Saint Petersburg State Medical University
Email: anastas905@yandex.ru
ORCID iD: 0000-0001-6291-2521
Russian Federation, Saint Petersburg
Veniamin V. Banko
Pavlov First Saint Petersburg State Medical University
Email: evilpsychology@gmail.com
ORCID iD: 0000-0002-4738-1969
Russian Federation, Saint Petersburg
Alexandra R. Makarenko
Pavlov First Saint Petersburg State Medical University
Email: 4eremuha17@mail.ru
ORCID iD: 0000-0001-9946-5710
Russian Federation, Saint Petersburg
References
- Klinicheskaya revmatologiya. Rukovodstvo dlya vrachei. Ed. by V.I. Mazurov. 3rd ed. Moscow: E-noto; 2021. (In Russ.)
- Erdes ShF, Rebrov AP, Dubinina TV, et al. Spondyloarthritis: modern terminology and definitions. Therapeutic Archive. 2019;91(5):84–88. (In Russ.). doi: 10.26442/00403660.2019.05.000208
- Rudwaleit M. New approaches to diagnosis and classification of axial and peripheral spondyloarthritis. Curr Opin Rheumatol. 2010;22(4):375–380. doi: 10.1097/bor.0b013e32833ac5cc
- Psoriaticheskie i enteropaticheskie artropatii (M07*) [Internet]. Mezhdunarodnaya klassifikatsiya boleznei 10 peresmotra (MKB-10). Available from: https://mkb-10.com/index.php?pid=12048. Accessed: June 21, 2022. (In Russ).
- Harbord M, Annese V, Vavricka SR, et al. The First European evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 2016;10(3):239–254. doi: 10.1093/ecco-jcc/jjv213
- Di Jiang C, Raine T. IBD considerations in spondyloarthritis. Ther Adv Musculoskelet Dis. 2020;12:1759720X20939410. doi: 10.1177/1759720x20939410
- Van Praet L, Jans L, Carron P, et al. Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: results from the GIANT cohort. Ann Rheum Dis. 2014;73(6):1186–1189. doi: 10.1136/annrheumdis-2013-203854
- Karreman MC, Luime JJ, Hazes JM, Weel AE. The prevalence and incidence of axial and peripheral spondyloarthritis in inflammatory bowel disease: A systematic review and meta-analysis. J Crohns Colitis. 2017;11(5):631–642. doi: 10.1093/ecco-jcc/jjw199
- Evans J, Sapsford M, McDonald S, et al. Prevalence of axial spondyloarthritis in patients with inflammatory bowel disease using cross-sectional imaging: A systematic literature review. Ther Adv Musculoskelet Dis. 2021;13:1759720x21996973. doi: 10.1177/1759720x21996973
- Belousova EN, Odintsova OH, Protopopov MS, Abdulganieva DI. ASAS criteria for inflammatory back pain: diagnostic significance in patients with inflammatory bowel disease. Rheumatology Science and Practice. 2019;57(2):175–179. (In Russ.). doi: 10.14412/1995-4484-2019-175-179
- Kumar A, Lukin D, Battat R, et al. Defining the phenotype, pathogenesis and treatment of Crohn’s disease associated spondyloarthritis. J Gastroenterol. 2020;55(7):667–678. doi: 10.1007/s00535-020-01692-w
- Fantini MC, Pallone F, Monteleone G. Common immunologic mechanisms in inflammatory bowel disease and spondylarthropathies. World J Gastroenterol. 2009;15(20):2472. doi: 10.3748/wjg.15.2472
- Kim JH, Choi IA. Cardiovascular morbidity and mortality in patients with spondyloarthritis: A meta-analysis. Int J Rheum Dis. 2021;24(4):477–486. doi: 10.1111/1756-185x.13970
- Moltó A, Etcheto A, van der Heijde D, et al. Prevalence of comorbidities and evaluation of their screening in spondyloarthritis: Results of the international cross-sectional ASAS-COMOSPA study. Ann Rheum Dis. 2016;75(6):1016–1023. doi: 10.1136/annrheumdis-2015-208174
- Gaidukova IZ, Rebrov AP. The risk of coronary artery disease development in patients with ankylosing spondylitis (Bechterew’s disease) and psoriatic arthritis: a 10-year prospective follow-up study. The Clinician. 2016;10(3):26–31. (In Russ.). doi: 10.17650/1818-8338-2016-10-3-26-31
- Bakland G, Gran JT, Nossent JC. Increased mortality in ankylosing spondylitis is related to disease activity. Ann Rheum Dis. 2011;70(11):1921–1925. doi: 10.1136/ard.2011.151191
- Vasilenko EA, Mazurov VI, Gaidukova IZ, et al. Interleukin-17 effect on the pathogenesis and risks of cardiovascular diseases in spondylarthritis. RMJ. 2020;(11):39–42. (In Russ.)
- Gravina AG, Dallio M, Masarone M, et al. Vascular endothelial dysfunction in inflammatory bowel diseases: pharmacological and nonpharmacological targets. Oxid Med Cell Longev. 2018;2018:2568569. doi: 10.1155/2018/2568569
- Ehrenpreis ED, Zhou Y, Alexoff A, Melitas C. Effect of the diagnosis of inflammatory bowel disease on risk-adjusted mortality in hospitalized patients with acute myocardial infarction, congestive heart failure and pneumonia. PLoS One. 2016;11(7):e0158926. doi: 10.1371/journal.pone.0158926
- Ruisi P, Makaryus JN, Ruisi M, Makaryus AN. Inflammatory bowel disease as a risk factor for premature coronary artery disease. J Clin Med Res. 2015;7(4):257–261. doi: 10.14740/jocmr2102w
- Schicho R, Marsche G, Storr M. Cardiovascular complications in inflammatory bowel disease. Curr Drug Targets. 2015;16(3):181–188. doi: 10.2174/1389450116666150202161500
- Bernstein CN, Wajda A, Blanchard JF. The incidence of arterial thromboembolic diseases in inflammatory bowel disease: a population-based study. Clin Gastroenterol Hepatol. 2008;6(1):41–45. doi: 10.1016/j.cgh.2007.09.016
- Feng W, Chen G, Cai D, et al. Inflammatory bowel disease and risk of ischemic heart disease: an updated meta-analysis of cohort studies. J Am Heart Assoc. 2017;6(8):e005892. doi: 10.1161/JAHA.117.005892
- Rungoe C, Basit S, Ranthe MF, et al. Risk of ischaemic heart disease in patients with inflammatory bowel disease: a nationwide Danish cohort study. Gut. 2013;62(5):689–694. doi: 10.1136/gutjnl-2012-303285
- Kristensen SL, Ahlehoff O, Lindhardsen J, et al. Inflammatory bowel disease is associated with an increased risk of hospitalization for heart failure. Circ Heart Fail. 2014;7(5):717–722. doi: 10.1161/circheartfailure.114.001152
- Czubkowski P, Osiecki M, Szymańska E, Kierkuś J. The risk of cardiovascular complications in inflammatory bowel disease. Clin Exp Med. 2020;20(4):481–491. doi: 10.1007/s10238-020-00639-y
- Andersen NN, Jess T. Risk of cardiovascular disease in inflammatory bowel disease. World J Gastrointest Pathophysiol. 2014;5(3):359–365. doi: 10.4291/wjgp.v5.i3.359
- Azevedo VF, Pecoits-Filho R. Atherosclerosis and endothelial dysfunction in patients with ankylosing spondylitis. Rheumatol Int. 2010;30(11):1411–1416. doi: 10.1007/s00296-010-1416-3
- Dubikov AI, Cherepovsky AA, Belogolovyh LA, et al. Role of nitric oxide in musculoskeletal system diseases (part II). Rheumatology Science and Practice. 2004;42(4):53–56. (In Russ.). doi: 10.14412/1995-4484-2004-803
- Kubes P, McCafferty DM. Nitric oxide and intestinal inflammation. Am J Med. 2000;109(2):150–158. doi: 10.1016/s0002-9343(00)00480-0
- Soufli I, Toumi R, Rafa H, Touil-Boukoffa C. Cytokines and nitric oxide in immunopathogenesis of IBD and potential therapeutic approaches. In: New Insights into Inflammatory Bowel Disease. Intechopen; 2016. doi: 10.5772/65001
- Kalinin RE, Suchkov IA, Korotkova NV, et al. The research of the molecular mechanisms of endothelial dysfunction in vitro. Genes and Cells. 2019;14(1):22–32. (In Russ.). doi: 10.23868/201903003
- Stepanova TV, Ivanov AN, Popyhova EB, Lagutina DD. Moleculare markers of the endothelial dysfunction. Modern problems of science and education. 2019;(1):1–9. (In Russ.)
- Onmaz DE, Isik K, Sivrikaya A, et al. Determination of serum methylarginine levels by tandem mass spectrometric method in patients with ankylosing spondylitis. Amino Acids. 2021;53(9):1329–1338. doi: 10.1007/s00726-021-03046-z
- de Vries C, Escobedo JA, Ueno H, et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255(5047):989–991. doi: 10.1126/science.1312256
- Speirs V, Atkin SL. Production of VEGF and expression of the VEGF receptors Flt-1 and KDR in primary cultures of epithelial and stromal cells derived from breast tumours. Br J Cancer. 1999;80(5–6):898–903. doi: 10.1038/sj.bjc.6690438
- Tuttolomondo A, Di Raimondo D, Pecoraro R, et al. Atherosclerosis as an inflammatory disease. Curr Pharm Des. 2012;18(28):4266–4288. doi: 10.2174/138161212802481237
- Malakhova ZL, Vlasov TD, Vasina EYu, et al. Comparison of sensitivity of various methods in the assessment of endothelium-dependent vasodilation. Proceedings of the 12-ya mezhdunarodnaya konferentsiya “Mikrotsirkulyatsiya i gemoreologiya: ot fundamental’nykh issledovanii v klinicheskuyu praktiku”. Yaroslavl’: Kancler; 2019. P. 42. (In Russ.)
- Lekakis J, Abraham P, Balbarini A, et al. Methods for evaluating endothelial function: A position statement from the European Society of Cardiology Working Group on peripheral circulation. Eur J Cardiovasc Prev Rehabil. 2011;18(6):775–789. doi: 10.1177/1741826711398179
- Triantafyllou C, Nikolaou M, Ikonomidis I, et al. Effects of anti-inflammatory treatment and surgical intervention on endothelial glycocalyx, peripheral and coronary microcirculatory function and myocardial deformation in inflammatory bowel disease patients: A two-arms two-stage clinical trial. Diagnostics (Basel). 2021;11(6):993. doi: 10.3390/diagnostics11060993
- Vlasov TD, Lazovskaya OA, Shimanski DA, et al. The endothelial glycocalyx: research methods and prospects for their use in endothelial dysfunction assessment. Regional blood circulation and microcirculation. 2020;19(1):5–16. (In Russ.). doi: 10.24884/1682-6655-2020-19-1-5-16
- Baryshnikov EN. Clinical and prognostic value of nitric oxide in inflammatory bowel diseases (clinical and experimental study) [dissertation]. Moscow; 2008. (In Russ.)
- Avdagić N, Zaćiragić A, Babić N, et al. Nitric oxide as a potential biomarker in inflammatory bowel disease. Bosn J Basic Med Sci. 2013;13(1):5–9. doi: 10.17305/bjbms.2013.2402
- Iwashita E, Miyahara T, Hino K, et al. High nitric oxide synthase activity in endothelial cells in ulcerative colitis. J Gastroenterol. 1995;30(4):551–554. doi: 10.1007/BF02347578
- Palatka K, Serfőző Z, Veréb Z, et al. Changes in the expression and distribution of the inducible and endothelial nitric oxide synthase in mucosal biopsy specimens of inflammatory bowel disease. Scand J Gastroenterol. 2005;40(6):670–680. doi: 10.1080/00365520510015539
- Owczarek D, Cibor D, Mach T. Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), arginine, and 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) level in patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2010;16(1):52–57. doi: 10.1002/ibd.20994
- Chidlow JH Jr, Shukla D, Grisham MB, Kevil CG. Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues. Am J Physiol Gastrointest Liver Physiol. 2007;293(1):G5–G18. doi: 10.1152/ajpgi.00107.2007
- Stepina EA. Clinical and laboratory indicators of endothelial function and their diagnostic significance in inflammatory bowel diseases [dissertation]. Perm’; 2016. (In Russ.)
- Yu W, Hegarty JP, Berg A, et al. Nkx2-3 transcriptional regulation of endothelin-1 and VEGF signaling in human intestinal microvascular endothelial cells. PLoS One. 2011;6(5):e20454. doi: 10.1371/journal.pone.0020454
- Dueñas Pousa I, Maté Jiménez J, Salcedo Mora X, et al. Analysis of soluble angiogenic factors in Crohn’s disease: A preliminary study. Gastroenterol Hepatol. 2007;30(9):518–524. doi: 10.1157/13111682
- Di Sabatino A, Ciccocioppo R, Armellini E, et al. Serum bFGF and VEGF correlate respectively with bowel wall thickness and intramural blood flow in Crohn’s disease. Inflamm Bowel Dis. 2004;10(5):573–577. doi: 10.1097/00054725-200409000-00011
- Shchukina OB. Differential diagnostic and prognostic criteria of clinical forms of Crohn’s disease [dissertation]. Saint Petersburg; 2017. (In Russ.)
- Bhatti M, Chapman P, Peters M, et al. Visualising E-selectin in the detection and evaluation of inflammatory bowel disease. Gut. 1998;43(1):40–47. doi: 10.1136/gut.43.1.40
- Gu P, Theiss A, Han J, Feagins LA. Increased cell adhesion molecules, PECAM-1, ICAM-3, or VCAM-1, Predict increased risk for flare in patients with quiescent inflammatory bowel disease. J Clin Gastroenterol. 2017;51(6):522–527. doi: 10.1097/MCG.0000000000000618
- Babayeva GH, Babayev ZM. New approach to the estimation of a clinical flow in patients with ulceratıve colitis and Crohn’s disease. Experimental and Clinical Gastroenterology. 2019;(2(162)):19–23. (In Russ.). doi: 10.31146/1682-8658-ecg-162-2-19-23
- Danese S, Sgambato A, Papa A, et al. Homocysteine triggers mucosal microvascular activation in inflammatory bowel disease. Am J Gastroenterol. 2005;100(4):886–895. doi: 10.1111/j.1572-0241.2005.41469.x
- Xu G, Tian KL, Liu GP, et al. Clinical significance of plasma D-dimer and von Willebrand factor levels in patients with ulcer colitis. World J Gastroenterol. 2002;8(3):575–576. doi: 10.3748/wjg.v8.i3.575
- Cibor D, Szczeklik K, Kozioł K,et al. Serum concentration of selected biochemical markers of endothelial dysfunction and inflammation in patients with varying activities of inflammatory bowel disease. Pol Arch Intern Med. 2020;130(7–8):598–606. doi: 10.20452/pamw.15463
- Magro F, Araujo F, Pereira P, et al. Soluble selectins, sICAM, sVCAM, and angiogenic proteins in different activity groups of patients with inflammatory bowel disease. Dig Dis Sci. 2004;49(7–8):1265–1274. doi: 10.1023/b:ddas.0000037822.55717.31
- Principi M, Mastrolonardo M, Scicchitano P, et al. Endothelial function and cardiovascular risk in active inflammatory bowel diseases. J Crohns Colitis. 2013;7(10):e427–433. doi: 10.1016/j.crohns.2013.02.001
- Caliskan Z, Keles N, Kahraman R, et al. Imparied retrobulbar blood flow and increased carotid IMT in patients with crohn’s disease. Int J Cardiovasc Imaging. 2016;32(11):1617–1623. doi: 10.1007/s10554-016-0956-3
- Bonnin P, Coelho J, Pocard M, et al. Anti-TNFα therapy early improves hemodynamics in local intestinal and extraintestinal circulations in active crohn’s disease. J Crohns Colitis. 2013;7(6):451–459. doi: 10.1016/j.crohns.2012.07.002
- Verma I, Syngle A, Krishan P, Garg N. Endothelial progenitor cells as a marker of endothelial dysfunction and atherosclerosis in ankylosing spondylitis: a cross-sectional study. Int J Angiol. 2017;26(1):36–42. doi: 10.1055/s-0036-1593445
- Ikdahl E, Hisdal J, Rollefstad S, et al. Rosuvastatin improves endothelial function in patients with inflammatory joint diseases, longitudinal associations with atherosclerosis and arteriosclerosis: results from the RORA-AS statin intervention study. Arthritis Res Ther. 2015;17:279. doi: 10.1186/s13075-015-0795-y
- Erre GL, Sanna P, Zinellu A, et al. Plasma asymmetric dimethylarginine (ADMA) levels and atherosclerotic disease in ankylosing spondylitis: a cross-sectional study. Clin Rheumatol. 2011;30(1):21–27. doi: 10.1007/s10067-010-1589-x
- Sari I, Kebapcilar L, Alacacioglu A, et al. Increased levels of asymmetric dimethylarginine (ADMA) in patients with ankylosing spondylitis. Intern Med. 2009;48(16):1363–1368. doi: 10.2169/internalmedicine.48.2193
- Inci U, Yildiz A, Batmaz I, Tekbas E. Assessment of serum asymmetric dimethylarginine levels and left ventricular diastolic function in patients with ankylosing spondylitis. Int J Rheum Dis. 2017;20(2):238–244. doi: 10.1111/1756-185X.12608
- Berg IJ, van der Heijde D, Dagfinrud H, et al. Disease activity in ankylosing spondylitis and associations to markers of vascular pathology and traditional cardiovascular disease risk factors: a cross-sectional study. J Rheumatol. 2015;42(4):645–653. doi: 10.3899/jrheum.141018
- Maslyanskiy AL, Zvartau NE, Kolesova EP, et al. Endothelial function in patients with rheumatologic diseases. Arterial Hypertension. 2015;21(2):168–180. (In Russ.). doi: 10.18705/1607-419X-2015-21-2-168-180
- Onmaz DE, Isik K, Sivrikaya A, et al. Determination of serum methylarginine levels by tandem mass spectrometric method in patients with ankylosing spondylitis. Amino Acids. 2021;53(9):1329–1338. doi: 10.1007/s00726-021-03046-z
- Kemény-Beke Á, Gesztelyi R, Bodnár N, et al. Increased production of asymmetric dimethylarginine (ADMA) in ankylosing spondylitis: association with other clinical and laboratory parameters. Joint Bone Spine. 2011;78(2):184–187. doi: 10.1016/j.jbspin.2010.05.009
- Genre F, López-Mejías R, Rueda-Gotor J, et al. IGF-1 and ADMA levels are inversely correlated in nondiabetic ankylosing spondylitis patients undergoing anti-TNF-alpha therapy. Biomed Res Int. 2014;2014:671061. doi: 10.1155/2014/671061
- Drouart M, Saas P, Billot M, et al. High serum vascular endothelial growth factor correlates with disease activity of spondylarthropathies. Clin Exp Immunol. 2003;132(1):158–162. doi: 10.1046/j.1365-2249.2003.02101.x
- Pedersen SJ, Sørensen IJ, Lambert RG, et al. Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor α inhibitors: a study of radiographic progression, inflammation on magnetic resonance imaging, and circulating biomarkers of inflammation, angiogenesis, and cartilage and bone turnover. Arthritis Rheum. 2011;63(12):3789–3800. doi: 10.1002/art.30627
- Hindryckx P, Laukens D, Serry G, et al. Subclinical gut inflammation in spondyloarthritis is associated with a pro-angiogenic intestinal mucosal phenotype. Ann Rheum Dis. 2011;70(11):2044–2048. doi: 10.1136/ard.2010.149229
- Genre F, López-Mejías R, Miranda-Filloy JA, et al. Anti-TNF-α therapy reduces endothelial cell activation in non-diabetic ankylosing spondylitis patients. Rheumatol Int. 2015;35(12):2069–2078. doi: 10.1007/s00296-015-3314-1
- Surdacki A, Sulicka J, Korkosz M, et al. Blood monocyte heterogeneity and markers of endothelial activation in ankylosing spondylitis. J Rheumatol. 2014;41(3):481–489. doi: 10.3899/jrheum.130803
- Das S, Sarkar R, Paul R, et al. Disease activity in spondyloarthropathy: Does it affect Vascular Health? J Assoc Physicians India. 2018;66(7):63–66.
- Sari I, Okan T, Akar S, et al. Impaired endothelial function in patients with ankylosing spondylitis. Rheumatology (Oxford). 2005;45(3):283–286. doi: 10.1093/rheumatology/kei145
- Aydoğan Baykara R, Küçük A, Tuzcu A, et al. The relationship of serum visfatin levels with clinical parameters, flow-mediated dilation, and carotid intima-media thickness in patients with ankylosing spondylitis. Turk J Med Sci. 2021;51(4):1865–1874. doi: 10.3906/sag-2012-351
- Przepiera-Będzak H, Fischer K, Brzosko M. Extra-articular symptoms in constellation with selected serum cytokines and disease activity in spondyloarthritis. Mediators Inflamm. 2016;2016:7617954. doi: 10.1155/2016/7617954
- Przepiera-Będzak H, Fischer K, Brzosko M. Axial spondyloarthritis and inflammatory bowel disease: Association between disease activity and endothelial dysfunction markers. Rheumatol Int. 2021;42(2):273–277. doi: 10.1007/s00296-021-04940-1
- Bandinelli F, Milia A, Manetti M, et al. Lymphatic endothelial progenitor cells and vascular endothelial growth factor-C in spondyloarthritis and Crohn’s disease: two overlapping diseases? Clin Exp Rheumatol. 2015;33(2):195–200.
- Cibor D, Domagala-Rodacka R, Rodacki T, et al. Endothelial dysfunction in inflammatory bowel diseases: Pathogenesis, assessment and implications. World J Gastroenterol. 2016;22(3):1067–1077. doi: 10.3748/wjg.v22.i3.1067
Supplementary files
There are no supplementary files to display.
