Polymorphism of folate metabolism genes in breast cancer patients

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Breast cancer is a widespread oncological disorder, which is considered one of the leading causes of mortality among women. DNA repair processes a well as it’s methylation involving genes of folate cycle play a crucial role in cancerogenesis. The aim of the study is to generalize the current data about association between polymorphic variants of folate cycle genes MTHFR С677Т (rs1801133), MTR A2756G (rs1805087), MTRR А66G (rs1801394) with risk of breast cancer development. The search of scientific papers has been conducted using PubMed and elibrary.ru sources. Original and randomized surveys published from 2008 till 2022 have been included in this review.

The study has accumulated sufficient data on MTHFR С677Т polymorphic variant in breast cancer patients, having significant influence on disease development. However, the data about MTR A2756G and MTRR A66G variants is quite limited. According to the findigs of many scientific papers, there is no link between polymorphic variants of these genes and breast cancerogenesis manifestation. Such factors like ethniсity and sufficient consumption of folates with nutrition can have significant impact on results and conclusions of studies about role of folate cycle genes in breast cancer patients.

Further investigation of MTHFR С677Т (rs1801133), MTR A2756G (rs1805087) and MTRR А66G (rs1801394) genetic polymorphic variants with consideration of gene-environment and gene-gene interactions could explain the presence of individual differences of breast cancer risk.

Full Text

Restricted Access

About the authors

Anna A. Timofeeva

The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: annateam86@gmail.com
ORCID iD: 0000-0002-9063-0158
SPIN-code: 1542-8153
Scopus Author ID: 55990319900
Russian Federation, Kemerovo

Varvara I. Minina

The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences; Kemerovo State University

Email: vminina@mail.ru
ORCID iD: 0000-0003-3485-9123
SPIN-code: 5153-8594
Scopus Author ID: 6603279179
ResearcherId: E-2147-2015

Dr. Sci. (Biol.)

Russian Federation, Kemerovo; Kemerovo

Evgeniya A. Astafeva

The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences; Kemerovo State Medical University

Email: astafeva.evgenia@yandex.ru
ORCID iD: 0000-0002-5841-6311
SPIN-code: 9814-4382
Russian Federation, Kemerovo; Kemerovo

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics. CA Cancer J Clin. 2021;71(1):7–33. doi: 10.3322/caac.21654
  2. Cecilio AP, Takakura ET, Jumes JJ, et al. Breast cancer in Brazil: epidemiology and treatment challenges. Breast Cancer (Dove Med Press). 2015;7:43–49. doi: 10.2147/BCTT.S50361
  3. Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24(9):2206–2223. doi: 10.1093/annonc/mdt303
  4. Michailidou K, Lindström S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92–94. doi: 10.1038/nature24284
  5. Ferreira MA, Gamazon ER, Al-Ejeh F, et al. Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat Commun. 2019;10(1):1741. doi: 10.1038/s41467-018-08053-5
  6. Pan Q, Liu YJ, Bai XF, et al. VARAdb: a comprehensive variation annotation database for human. Nucleic Acids Res. 2021;49(D1):D1431–D1444. doi: 10.1093/nar/gkaa922
  7. Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–2416. doi: 10.1001/jama.2017.7112
  8. Michailidou K, Lindström S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92–94. doi: 10.1038/nature24284
  9. Cao S, Zhu Z, Zhou J, et al. Associations of one-carbon metabolism-related gene polymorphisms with breast cancer risk are modulated by diet, being higher when adherence to the Mediterranean dietary pattern is low. Breast Cancer Res Treat. 2021;187(3):793–804. doi: 10.1007/s10549-021-06108-8
  10. Golden E, Rashwan R, Woodward EA, et al. The oncogene AAMDC links PI3K-AKT-mTOR signaling with metabolic reprograming in estrogen receptor-positive breast cancer. Nat Commun. 2021;12(1):1920. doi: 10.1038/s41467-021-22101-7
  11. Harmon DL, Shields DC, Woodside JV, et al. Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol. 1999;17(4):298–309. doi: 10.1002/(SICI)1098-2272(199911)17:4<298::AID-GEPI5>3.0.CO;2-V
  12. Farkas SA, Böttiger AK, Isaksson HS, et al. Epigenetic alterations in folate transport genes in placental tissue from fetuses with neural tube defects and in leukocytes from subjects with hyperhomocysteinemia. Epigenetics. 2013;8(3):303–316. doi: 10.4161/epi.23988
  13. Bethke L, Webb E, Murray A, et al. Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiol Biomarkers Prev. 2008;17(5):1195–1202. doi: 10.1158/1055-9965.EPI-07-2733
  14. Goyette P, Rozen R. The thermolabile variant 677C-->T can further reduce activity when expressed in cis with severe mutations for human methylenetetrahydrofolate reductase. Hum Mutat. 2000;16(2):132–138. doi: 10.1002/1098-1004(200008)16:2<132::AID-HUMU5>3.0.CO;2-T
  15. Cui LH, Shin MH, Kim HN, et al. Methylenetetrahydrofolate reductase C677T polymorphism in patients with lung cancer in a Korean population. BMC Med Genet. 2011;12:28. doi: 10.1186/1471-2350-12-28
  16. Chen X, Ahamada H, Zhang T, et al. Association of intake folate and related gene polymorphisms with breast cancer. J Nutr Sci Vitaminol (Tokyo). 2019;65(6):459–469. doi: 10.3177/jnsv.65.459
  17. Bravatà V. Controversial roles of methylenetetrahydrofolate reductase polymorphisms and folate in breast cancer disease. Int J Food Sci Nutr. 2015;66(1):43–49. doi: 10.3109/09637486.2014.959896
  18. Yan J, Yin M, Dreyer ZE, et al. A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children. Pediatr Blood Cancer. 2012;58(4):513–518. doi: 10.1002/pbc.23137
  19. Kurzwelly D, Knop S, Guenther M, et al. Genetic variants of folate and methionine metabolism and PCNSL incidence in a German patient population. J Neurooncol. 2010;100(2):187–192. doi: 10.1007/s11060-010-0154-4
  20. Kim HN, Lee IK, Kim YK, et al. Association between folate-metabolizing pathway polymorphism and non-Hodgkin lymphoma. Br J Haematol. 2008;140(3):287–294. doi: 10.1111/j.1365-2141.2007.06893.x
  21. Wen YY, Yang SJ, Zhang JX, Chen XY. Methylenetetrahydrofolate reductase genetic polymorphisms and esophageal squamous cell carcinoma susceptibility: a meta-analysis of case-control studies. Asian Pac J Cancer Prev. 2013;14(1):21–25. doi: 10.7314/apjcp.2013.14.1.21
  22. Fang Y, Xiao F, An Z, Hao L. Systematic review on the relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and esophageal squamous cell carcinoma. Asian Pac J Cancer Prev. 2011;12(7):1861–1866.
  23. Bakanova ML, Soboleva OA, Minina VI, et al. Association of polymorphism of folate metabolism genes and chromosomal aberrations in blood cells of lung cancer patients. Medical Genetics. 2017;16(3):12–19. (In Russ.)
  24. Ozen F, Erdis E, Sik E, et al. Germ-line MTHFR C677T, FV H1299R and PAI-1 5G/4G variations in breast carcinoma. Asian Pac J Cancer Prev. 2013;14(5):2903–2908. doi: 10.7314/apjcp.2013.14.5.2903
  25. Rahimi Z, Ahmadian Z, Akramipour R, et al. Thymidylate synthase and methionine synthase polymorphisms are not associated with susceptibility to childhood acute lymphoblastic leukemia in Kurdish population from Western Iran. Mol Biol Rep. 2012;39(3):2195–2200. doi: 10.1007/s11033-011-0968-y
  26. Henao OL, Piyathilake CJ, Waterbor JW, et al. Women with polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) are less likely to have cervical intraepithelial neoplasia (CIN) 2 or 3. Int J Cancer. 2005;113(6):991–997. doi: 10.1002/ijc.20695
  27. Lin J, Spitz MR, Wang Y, et al. Polymorphisms of folate metabolic genes and susceptibility to bladder cancer: a case-control study. Carcinogenesis. 2004;25(9):1639–1647. doi: 10.1093/carcin/bgh175
  28. Skibola CF, Forrest MS, Coppedé F, et al. Polymorphisms and haplotypes in folate-metabolizing genes and risk of non-Hodgkin lymphoma. Blood. 2004;104(7):2155–2162. doi: 10.1182/blood-2004-02-0557
  29. Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 2002;41(45):13378–13385. doi: 10.1021/bi020536s
  30. Rezaee M, Akbari H, Momeni-Moghaddam MA, et al. Association of C677T (rs1081133) and A1298C (rs1801131) Methylenetetrahydrofolate reductase variants with breast cancer susceptibility among Asians: a systematic review and meta-analysis. Biochem Genet. 2021;59(2):367–397. doi: 10.1007/s10528-020-10020-z
  31. Markovsky AV. The role of folate metabolism genes polymorphism and serum aminotiols in the formation of various histological types of breast cancer. Transbaikalian Medical Bulletin. 2019;(2):40–47. (In Russ.). doi: 10.52485/19986173_2019_2_40
  32. Zara-Lopes T, Gimenez-Martins AP, Nascimento-Filho CH, et al. Role of MTHFR C677T and MTR A2756G polymorphisms in thyroid and breast cancer development. Genet Mol Res. 2016;15(2). doi: 10.4238/gmr.15028222
  33. Hardi H, Melki R, Boughaleb Z, et al. Significant association between ERCC2 and MTHR polymorphisms and breast cancer susceptibility in Moroccan population: genotype and haplotype analysis in a case-control study. BMC Cancer. 2018;18(1):292. doi: 10.1186/s12885-018-4214-z
  34. Shilova AN, Shkoda OS, Lomivorotov VV, Shilova JN. Association of the folate metabolism genes with the risk for lung, prostate, breast and uterine cancer. Russian journal of oncology. 2017;22(4):203–208. (In Russ.). doi: 10.18821/1028-9984-2017-22-4-203-208
  35. Kaya EF, Karakus N, Ulusoy AN, et al. Association of the MTHFR Gene C677T polymorphism with breast cancer in a Turkish population. Oncol Res Treat. 2016;39(9):534–538. doi: 10.1159/000448084
  36. Meneses-Sanchez P, Garcia-Hernandez SC, Porchia LM, et al. C677T and A1298C methylenetetrahydrofolate reductase polymorphisms and breast cancer susceptibility among Latinos: a meta-analysis. Breast Cancer. 2019;26(5):602–611. doi: 10.1007/s12282-019-00961-8
  37. Weiner AS, Boiarskikh UA, Voronina EN, et al. Polymorphic variants of folate metabolizing genes (C677T and A1298C MTHFR, C1420T SHMT1 and G1958A MTHFD) are not associated with the risk of breast cancer in West Siberian Region of Russia. Mol Biol (Mosk). 2010;44(5):720–727.
  38. Sengupta D, Banerjee S, Mukhopadhyay P, et al. A meta-analysis and in silico analysis of polymorphic variants conferring breast cancer risk in the Indian subcontinent. Future Oncol. 2020;16(27):2121–2142. doi: 10.2217/fon-2020-0333
  39. Ramos-Silva A, Figuera LE, Soto-Quintana OM, et al. Association of the C677T polymorphism in the methylenetetrahydrofolate reductase gene with breast cancer in a Mexican population. Genet Mol Res. 2015;14(2):4015–4026. doi: 10.4238/2015.April.27.16
  40. Gimenez-Martins APD, Castanhole-Nunes MMU, Nascimento-Filho CHVD, et al. Association between folate metabolism polymorphisms and breast cancer: a case-control study. Genet Mol Biol. 2021;44(4):e20200485. doi: 10.1590/1678-4685-GMB-2020-0485
  41. Wang X, Xiong M, Pan B, et al. Association between SNPs in the one-carbon metabolism pathway and the risk of female breast cancer in a Chinese population. Pharmgenomics Pers Med. 2022;15:9–16. doi: 10.2147/PGPM.S328612
  42. Suzuki T, Matsuo K, Hirose K, et al. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis. 2008;29(2):356–362. doi: 10.1093/carcin/bgm295
  43. Akilzhanova A, Nurkina Z, Momynaliev K, et al. Genetic profile and determinants of homocysteine levels in Kazakhstan patients with breast cancer. Anticancer Res. 2013;33(9):4049–4059.
  44. Huang CY, Chang WS, Shui HA, et al. Evaluation of the contribution of methylenetetrahydrofolate reductase genotypes to Taiwan breast cancer. Anticancer Res. 2014;34(8):4109–4115.
  45. de Cássia Carvalho Barbosa R, da Costa DM, Cordeiro DE, et al. Interaction of MTHFR C677T and A1298C, and MTR A2756G gene polymorphisms in breast cancer risk in a population in Northeast Brazil. Anticancer Res. 2012;32(11):4805–4811.
  46. Waseem M, Hussain SR, Kumar S, et al. Association of MTHFR (C677T) gene polymorphism with breast cancer in North India. Biomark Cancer. 2016;8:111–117. doi: 10.4137/BIC.S40446
  47. Naushad SM, Pavani A, Digumarti RR, et al. Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer. Mol Biol Rep. 2011;38(8):4893–4901. doi: 10.1007/s11033-010-0631-z
  48. Gong Z, Yao S, Zirpoli G, et al. Genetic variants in one-carbon metabolism genes and breast cancer risk in European American and African American women. Int J Cancer. 2015;137(3):666–677. doi: 10.1002/ijc.29434
  49. Weiner AS, Boyarskikh UA, Voronina EN, et al. Polymorphisms in the folate-metabolizing genes MTR, MTRR, and CBS and breast cancer risk. Cancer Epidemiol. 2012;36(2):e95–e100. doi: 10.1016/j.canep.2011.11.010
  50. Zhong S, Xu J, Li W, et al. Methionine synthase A2756G polymorphism and breast cancer risk: an up-to-date meta-analysis. Gene. 2013;527(2):510–515. doi: 10.1016/j.gene.2013.06.054
  51. Hosseini M. Role of polymorphism of methyltetrahydrofolate-homocysteine methyltransferase (MTR) A2756G and breast cancer risk. Pol J Pathol. 2013;64(3):191–195. doi: 10.5114/pjp.2013.38138
  52. Hu S, Liu HC, Xi SM. Methionine synthase reductase A66G polymorphism is not associated with breast cancer susceptibility – a meta-analysis. Asian Pac J Cancer Prev. 2014;15(7):3267–3271. doi: 10.7314/apjcp.2014.15.7.3267
  53. Hu J, Zhou GW, Wang N, Wang YJ. MTRR A66G polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010;124(3):779–784. doi: 10.1007/s10549-010-0892-1
  54. Lajin B, Alhaj Sakur A, Ghabreau L, Alachkar A. Association of polymorphisms in one-carbon metabolizing genes with breast cancer risk in Syrian women. Tumour Biol. 2012;33(4):1133–1139. doi: 10.1007/s13277-012-0354-y
  55. Wu X, Xu W, Zhou T, et al. The Role of genetic polymorphisms as related to one-carbon metabolism, vitamin B6, and gene-nutrient interactions in maintaining genomic stability and cell viability in Chinese breast cancer patients. Int J Mol Sci. 2016;17(7):1003. doi: 10.3390/ijms17071003
  56. Maruti SS, Ulrich CM, Jupe ER, White E. MTHFR C677T and postmenopausal breast cancer risk by intakes of one-carbon metabolism nutrients: a nested case-control study. Breast Cancer Res. 2009;11(6):R91. doi: 10.1186/bcr2462
  57. Ma E, Iwasaki M, Junko I, et al. Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Brazilian women. BMC Cancer. 2009;9:122. doi: 10.1186/1471-2407-9-122
  58. Varela-Rey M, Woodhoo A, Martinez-Chantar ML, et al. Alcohol, DNA methylation, and cancer. Alcohol Res. 2013;35(1):25–35.
  59. Allen NE, Beral V, Casabonne D, et al. Moderate alcohol intake and cancer incidence in women. J Natl Cancer Inst. 2009;101(5):296–305. doi: 10.1093/jnci/djn514
  60. Platek ME, Shields PG, Marian C, et al. Alcohol consumption and genetic variation in methylenetetrahydrofolate reductase and 5-methyltetrahydrofolate-homocysteine methyltransferase in relation to breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18(9):2453–2459. doi: 10.1158/1055-9965.EPI-09-0159

Supplementary files

Supplementary Files
Action
1. Figure. Schematic representation of single-carbon metabolism [16]. SAM — S-adenosylmethionine; SАH — S-adenosyl-L-homocysteine; DHF — dihydrofolate; ТHF — tetrahydrofolate; 5-МеTHF — 5-methyl tetrahydrofolate; 5,10-MTHF — 5,10-methylene tetrahydrofolate

Download (266KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies