Cardiotoxicity and cardiac arrhythmias in cancer therapy: a review of current evidence

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cardiac arrhythmias are among the most frequent and clinically significant manifestations of anticancer therapy-induced cardiotoxicity. Despite substantial progress in oncology and the increasing availability of targeted and immunological treatments, the incidence of cardiovascular complications, including rhythm disturbances, continues to rise.

This article provides a comprehensive review of current evidence on the association between various types of anticancer therapies — including traditional cytotoxic chemotherapy, targeted therapies, immune checkpoint inhibitors, Chimeric antigen receptor T-cell therapy, and Bispecific T-cell engager therapy — and the development of arrhythmias. Special attention is given to pathophysiological mechanisms, including direct cardiomyocyte toxicity, electrophysiological disturbances due to ion channel blockade, ischemic myocardial injury, and inflammatory changes. The review outlines the clinical manifestations of common arrhythmias such as atrial fibrillation, ventricular tachycardia and atrioventricular block caused by different classes of anticancer drugs. Additionally, it discusses modern approaches to the diagnosis, screening, and prevention of arrhythmic complications in patients with cancer. A key emphasis is placed on the importance of a multidisciplinary approach involving close collaboration among cardiologists, oncologists, and clinical pharmacists to optimize treatment safety and efficacy while preventing potentially life-threatening conditions. Finally, the article highlights the need for further research into molecular mechanisms and the development of standardized monitoring algorithms in patients undergoing anticancer therapy, including the application of digital health technologies and artificial intelligence.

Full Text

Restricted Access

About the authors

Valeria A. Kolomyitseva

Rostov State Medical University

Author for correspondence.
Email: aonext@mail.ru
ORCID iD: 0009-0009-5768-0661
Russian Federation, Nakhichevan Lane, building 29, Rostov-on-Don, 344022

Liana A. Zaripova

Samara State Medical University

Email: Venera.zaripova.74@mail.ru
ORCID iD: 0009-0001-7749-8762
Russian Federation, Samara

Darina A. Bazhina

N.N. Burdenko Voronezh State Medical University

Email: bazhinadarina@yandex.ru
ORCID iD: 0009-0007-1278-7903
Russian Federation, Voronezh

Aiganat P. Aidemirova

Rostov State Medical University

Email: aika.aidemirova22@mail.ru
ORCID iD: 0009-0002-3628-2305
Russian Federation, Rostov-on-Don

Murat S. Gumerov

Bashkir State Medical University

Email: bashspider@gmail.com
ORCID iD: 0009-0007-3719-2260
Russian Federation, Ufa

Maryam A. Uyanaeva

Rostov State Medical University

Email: maramuanava@gmail.com
ORCID iD: 0009-0003-6036-1828
Russian Federation, Rostov-on-Don

Pavel N. Furs

Bashkir State Medical University

Email: pasha.furs.2000@mail.ru
ORCID iD: 0009-0008-2438-0649
Russian Federation, Ufa

Venera M. Gadeeva

Bashkir State Medical University

Email: gadeevavenera@mail.ru
ORCID iD: 0009-0008-8555-7057
Russian Federation, Ufa

Timur A. Salyakhov

Bashkir State Medical University

Email: timasalyakhov@icloud.com
ORCID iD: 0009-0003-0027-7181
Russian Federation, Ufa

Liana R. Gazislamova

Bashkir State Medical University

Email: Gazislamova@bk.ru
ORCID iD: 0009-0008-6715-9338
Russian Federation, Ufa

Artem V. Vasilyev

Bashkir State Medical University

Email: artem19a19@gmail.com
ORCID iD: 0009-0007-7082-0556
Russian Federation, Ufa

Diana A. Koksheneva

Kuban State Medical University

Email: kokhseneva123rus16@gmail.com
ORCID iD: 0009-0007-3154-3752
Russian Federation, Krasnodar

Тагир R. Osmanov

Rostov State Medical University

Email: nata.mitrofanova.78@mail.ru
ORCID iD: 0009-0007-6852-669X
Russian Federation, Rostov-on-Don

Victoria V. Fedorenko

Rostov State Medical University

Email: fedorovalika128@gmail.com
ORCID iD: 0009-0006-0181-1827
Russian Federation, Rostov-on-Don

Askar R. Gareev

Bashkir State Medical University

Email: askar.gareev@inbox.ru
ORCID iD: 0009-0008-8862-4884
Russian Federation, Ufa

References

  1. Shakhzadova AO, Starinsky VV, Lisichnikova IV. Cancer care to the population of Russia in 2022. Siberian journal of oncology. 2023;22(5):5–13. EDN: PESHHL doi: 10.21294/1814-4861-2023-22-5-5-13
  2. Glushchenko VA, Irklienko EK. Cardiovascular morbidity is one of the most important health problems. Medicine and healthcare organization. 2019;4(1):56–63. EDN: KNGYDV
  3. Merabishvili V. The state of oncological care in Russia: malignant neoplasms of the skin (C44). Typical mortality, median survival, observed and relative survival, taking into account the stage of the disease. Population-based research at the federal district level. Problems of oncology. 2021;67(5):640–645. EDN: NHHSND doi: 10.37469/0507-3758-2021-67-5-640-645
  4. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12–49. doi: 10.3322/caac.21820
  5. Cleary S, Rosen SD, Gilbert DC, Langley RE. Cardiovascular health: an important component of cancer survivorship. BMJ Oncol. 2023;2(1):e000090. doi: 10.1136/bmjonc-2023-000090
  6. Zimakova EI, Orlova IA, Begrambekova YuL. Prevalence and perspective directions for correction of behavioral risk factors of cardiovascular diseases associated with unhealthy diet and low physical activity in young people. South Russian Journal of Therapeutic Practice. 2024;5(3):6–13. doi: 10.21886/2712-8156-2024-5-3-6-13
  7. Agarwal MA, Sridharan A, Pimentel RC, et al. Ventricular arrhythmia in cancer patients: mechanisms, treatment strategies and future avenues. Arrhythm Electrophysiol Rev. 2023;12:e16. doi: 10.15420/aer.2023.04
  8. Wortman JE, Lucas VS Jr, Schuster E, et al. Sudden death during doxorubicin administration. Cancer. 1979;44(5):1588–1591. doi: 10.1002/1097-0142(197911)44:5<1588::aid-cncr2820440508>3.0.co;2-x
  9. Bonsu JM, Kola-Kehinde O, Kim L, et al. Cardiovascular safety communications after US Food and Drug Administration approval of contemporary cancer therapies. JAMA Oncol. 2021;7(11):1722–1723. doi: 10.1001/jamaoncol.2021.4771
  10. Tonorezos ES, Stillwell EE, Calloway JJ, et al. Arrhythmias in the setting of hematopoietic cell transplants. Bone Marrow Transplant. 2015;50(9):1212–1216. doi: 10.1038/bmt.2015.127
  11. Potievskaya VI, Akhobekov AA, Kononova EV. Relationship between cardiac arrhythmias and anticancer therapy. Cardiovascular Therapy and Prevention. 2020;19(5):133–141. EDN: FWDMGC doi: 10.15829/1728-8800-2020-2417
  12. Gumerova KS, Sakhautdinova GM, Polyakova IM. Antitumour drug induced cardiovascular toxicity and current tumour treatment methods. Creative surgery and oncology. 2019;9(4):285–292. EDN: ITUFBA doi: 10.24060/2076-3093-2019-9-4-285-292
  13. Duan J, Tao J, Zhai M, et al. Anticancer drugs-related QTc prolongation, torsade de pointes and sudden death: current evidence and future research perspectives. Oncotarget. 2018;9(39):25738–25749. doi: 10.18632/oncotarget.25008
  14. Sun Y, Wang L, Que Y, et al. Ventricular repolarization dynamics in arsenic trioxide treatment of acute promyelocytic leukemia. Int J Cardiol. 2020;306:163–167. doi: 10.1016/j.ijcard.2019.11.099
  15. Lyon AR, López-Fernández T, Couch LS, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229–4361. doi: 10.1093/eurheartj/ehac244
  16. Porta-Sánchez A, Gilbert C, Spears D, et al. Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc. 2017;6(12):e007724. doi: 10.1161/JAHA.117.007724
  17. Roboz GJ, Ritchie EK, Carlin RF, et al. Prevalence, management, and clinical consequences of QT interval prolongation during treatment with arsenic trioxide. J Clin Oncol. 2014;32(33):3723–3728. doi: 10.1200/JCO.2013.51.2913
  18. McGuire WP, Rowinsky EK, Rosenshein NB, et al. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med. 1989;111(4):273–279. doi: 10.7326/0003-4819-111-4-273
  19. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22(4):263–302. doi: 10.2165/00002018-200022040-00002
  20. Rehman W, Arfons LM, Lazarus HM. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther Adv Hematol. 2011;2(5):291–308. doi: 10.1177/2040620711413165
  21. Minoia C, Giannoccaro M, Iacobazzi A, et al. Antineoplastic drug-induced bradyarrhythmias. Expert Opin Drug Saf. 2012;11(5):739–751. doi: 10.1517/14740338.2012.705826
  22. Tamargo J, Caballero R, Delpón E. Cancer chemotherapy and cardiac arrhythmias: a review. Drug Saf. 2015;38(2):129–152. doi: 10.1007/s40264-014-0258-4
  23. Rajkumar SV, Rosiñol L, Hussein M, et al. Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J Clin Oncol. 2008;26(13):2171–2177. doi: 10.1200/JCO.2007.14.1853
  24. Fradley MG, Beckie TM, Brown SA, et al. Recognition, prevention, and management of arrhythmias and autonomic disorders in cardio-oncology: a scientific statement from the American Heart Association. Circulation. 2021;144(3):e41–e55. doi: 10.1161/CIR.0000000000000986.
  25. Liu R, Li D, Sun F, et al. Melphalan induces cardiotoxicity through oxidative stress in cardiomyocytes derived from human induced pluripotent stem cells. Stem Cell Res Ther. 2020;11(1):470. doi: 10.1186/s13287-020-01984-1
  26. Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229. doi: 10.1124/pr.56.2.6
  27. Horacek JM, Jakl M, Horackova J, et al. Assessment of anthracycline-induced cardiotoxicity with electrocardiography. Exp Oncol. 2009;31(2):115–117.
  28. Iwata N, Karasawa M, Omine M, et al. Aclarubicin-associated QTc prolongation and ventricular fibrillation. Cancer Treat Rep. 1984;68(3):527–529.
  29. Kilickap S, Barista I, Akgul E, et al. Early and late arrhythmogenic effects of doxorubicin. South Med J. 2007;100(3):262–265. doi: 10.1097/01.smj.0000257382.89910.fe
  30. Mazur M, Wang F, Hodge DO, et al. Burden of cardiac arrhythmias in patients with anthracycline-related cardiomyopathy. JACC Clin Electrophysiol. 2017;3(2):139–150. doi: 10.1016/j.jacep.2016.08.009
  31. Buza V, Rajagopalan B, Curtis AB. Cancer treatment-induced arrhythmias: focus on chemotherapy and targeted therapies. Circ Arrhythm Electrophysiol. 2017;10(8):e005443. doi: 10.1161/CIRCEP.117.005443
  32. Dent RG, Mccoll I. 5-fluorouracil and angina. Lancet. 1975;305(7902):347–348. doi: 10.1016/S0140-6736(75)91270-2
  33. Yilmaz U, Oztop I, Ciloglu A, et al. 5-fluorouracil increases the number and complexity of premature complexes in the heart: a prospective study using ambulatory ECG monitoring. Int J Clin Pract. 2007;61(5):795–801. doi: 10.1111/j.1742-1241.2007.01323.x
  34. Vaflard P, Ederhy S, Torregrosa C, et al. Fluoropyrimidines cardiac toxicity: 5-fluorouracil, capecitabine, compound S-1 and trifluridine/tipiracil. Bull Cancer. 2018;105(7–8):707–719. doi: 10.1016/j.bulcan.2018.05.005
  35. Bhullar KS, Lagarón NO, McGowan EM, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48. doi: 10.1186/s12943-018-0804-2
  36. Leiva O, Beaty W, Soo S, et al. Cancer therapy-associated pulmonary hypertension and right ventricular dysfunction: etiologies and prognostic implications. Rev Cardiovasc Med. 2024;25(3):87. doi: 10.31083/j.rcm2503087
  37. Herrmann J. Tyrosine kinase inhibitors and vascular toxicity: impetus for a classification system? Curr Oncol Rep. 2016;18(6):33. doi: 10.1007/s11912-016-0514-0
  38. Cheng C, Woronow D, Nayernama A, et al. Ibrutinib-associated ventricular arrhythmia in the FDA Adverse Event Reporting System. Leuk Lymphoma. 2018;59(12):3016–3017. doi: 10.1080/10428194.2018.1457149
  39. Mathur K, Saini A, Ellenbogen KA, Shepard RK. Profound sinoatrial arrest associated with ibrutinib. Case Rep Oncol Med. 2017;2017:7304021. doi: 10.1155/2017/7304021
  40. Yun S, Vincelette ND, Acharya U, Abraham I. Risk of atrial fibrillation and bleeding diathesis associated with ibrutinib treatment: a systematic review and pooled analysis of four randomized controlled trials. Clin Lymphoma Myeloma Leuk. 2017;17(1):31–37.e13. doi: 10.1016/j.clml.2016.09.010
  41. Alexandre J, Salem JE, Moslehi J, et al. Identification of anticancer drugs associated with atrial fibrillation: analysis of the WHO pharmacovigilance database. Eur Heart J Cardiovasc Pharmacother. 2021;7(4):312–320. doi: 10.1093/ehjcvp/pvaa037
  42. Ahmad J, Thurlapati A, Thotamgari S, et al. Anti-cancer drugs associated atrial fibrillation-an analysis of real-world pharmacovigilance data. Front Cardiovasc Med. 2022;9:739044. doi: 10.3389/fcvm.2022.739044
  43. Leong DP, Caron F, Hillis C, et al. The risk of atrial fibrillation with ibrutinib use: a systematic review and meta-analysis. Blood. 2016;128(1):138–140. doi: 10.1182/blood-2016-05-712828
  44. Xiao L, Salem JE, Clauss S, et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of c-terminal src kinase. Circulation. 2020;142(25):2443–2455. doi: 10.1161/CIRCULATIONAHA.120.049210
  45. Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol. 2021;39(31):3441–3452. doi: 10.1200/JCO.21.01210
  46. Tam CS, Opat S, D’Sa S, et al. A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenström macroglobulinemia: the ASPEN study. Blood. 2020;136(18):2038–2050. doi: 10.1182/blood.2020006844
  47. Tam CS, Dimopoulos M, Garcia-Sanz R, et al. Pooled safety analysis of zanubrutinib monotherapy in patients with B-cell malignancies. Blood Adv. 2022;6(4):1296–1308. doi: 10.1182/bloodadvances.2021005621
  48. Pruis MA, Veerman GDM, Hassing HC, et al. Cardiac toxicity of alectinib in patients with ALK+ lung cancer: outcomes of cardio-oncology follow-up. JACC CardioOncol. 2023;5(1):102–113. doi: 10.1016/j.jaccao.2022.09.006
  49. Steinberg M. Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther. 2007;29(11):2289–2308. doi: 10.1016/j.clinthera.2007.11.005
  50. Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS One. 2012;7(2):e30353. doi: 10.1371/journal.pone.0030353
  51. Ghiaseddin A, Reardon D, Massey W, et al. Phase II study of bevacizumab and vorinostat for patients with recurrent World Health Organization grade 4 malignant glioma. Oncologist. 2018;23(2):157–e21. doi: 10.1634/theoncologist.2017-0501
  52. Bello CL, Mulay M, Huang X, et al. Electrocardiographic characterization of the QTc interval in patients with advanced solid tumors: pharmacokinetic- pharmacodynamic evaluation of sunitinib. Clin Cancer Res. 2009;15(22):7045–7052. doi: 10.1158/1078-0432.CCR-09-1521
  53. Petrini I, Lencioni M, Ricasoli M, et al. Phase II trial of sorafenib in combination with 5-fluorouracil infusion in advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2012;69(3):773–780. doi: 10.1007/s00280-011-1753-2
  54. Larkin J, Ascierto PA, Dréno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–1876. doi: 10.1056/NEJMoa1408868
  55. Shah MH, Binkley P, Chan K, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12(13):3997–4003. doi: 10.1158/1078-0432.CCR-05-2689
  56. DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–2398. doi: 10.1056/NEJMoa1716984
  57. Turner NC, Ro J, André F, et al. PALOMA3 Study Group. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209–219. doi: 10.1056/NEJMoa1505270
  58. Cristofanilli M, Turner NC, Bondarenko I, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–439. doi: 10.1016/S1470-2045(15)00613-0
  59. Lee HA, Kim EJ, Hyun SA, et al. Electrophysiological effects of the anti-cancer drug lapatinib on cardiac repolarization. Basic Clin Pharmacol Toxicol. 2010;107(1):614–618. doi: 10.1111/j.1742-7843.2010.00556.x
  60. Shubnikova EV, Bukatina TM, Velts NYu, et al. Immune response checkpoint inhibitors: new risks of a new class of antitumor agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22
  61. Gavrilina OA, Galstyan GM, Shchekina AE, et al. Chimeric antigen receptor T-cell therapy in adult patients with B-cell lymphoproliferative diseases. Russian journal of hematology and transfusiology. 2022;67(1):8–28. doi: 10.35754/0234-5730-2022-67-1-8-28
  62. Kuznetsova MS, Shiku H, Karaulov AV, Sennikov SV. Modern T cell technologies for immunotherapy of solid tumors. Medical Immunology (Russia). 2023;25(2):271–286. EDN: NHKVTU doi: 10.15789/10.15789/1563-0625-MTC-2444
  63. Shamova TV, Sitkovskaya AO, Vashchenko LN, Kechedzhieva EE. Adoptive cell therapy: Current advances. South Russian Journal of Cancer. 2020;1(1):43–59. EDN: GWAXME doi: 10.37748/2687-0533-2020-1-1-4
  64. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi: 10.1056/NEJMoa1709866
  65. Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. doi: 10.1038/nrclinonc.2017.148
  66. Lefebvre B, Kang Y, Smith AM, et al. Cardiovascular effects of CAR T cell therapy: a retrospective study. JACC CardioOncol. 2020;2(2):193–203. doi: 10.1016/j.jaccao.2020.04.012
  67. Ganatra S, Redd R, Hayek SS, et al. Chimeric antigen receptor T-cell therapy-associated cardiomyopathy in patients with refractory or relapsed non-Hodgkin lymphoma. Circulation. 2020;142(17):1687–1690. doi: 10.1161/CIRCULATIONAHA.120.048100
  68. Goldman A, Maor E, Bomze D, et al. Adverse cardiovascular and pulmonary events associated with chimeric antigen receptor T-cell therapy. J Am Coll Cardiol. 2021;78(18):1800–1813. doi: 10.1016/j.jacc.2021.08.044
  69. Ganatra S, Parikh R, Neilan TG. Cardiotoxicity of immune therapy. Cardiol Clin. 2019;37(4):385–397. doi: 10.1016/j.ccl.2019.07.008
  70. Burstein DS, Maude S, Grupp S, et al. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24(8):1590–1595. doi: 10.1016/j.bbmt.2018.05.014
  71. Baik AH, Oluwole OO, Johnson DB, et al. Mechanisms of cardiovascular toxicities associated with immunotherapies. Circ Res. 2021;128(11):1780–1801. doi: 10.1161/CIRCRESAHA.120.315894
  72. Lazzerini PE, Laghi-Pasini F, Acampa M, et al. Systemic inflammation rapidly induces reversible atrial electrical remodeling: the role of interleukin-6-mediated changes in connexin expression. J Am Heart Assoc. 2019;8(16):e011006. doi: 10.1161/JAHA.118.011006
  73. Lee DH, Chandrasekhar S, Jain MD, et al. Cardiac and inflammatory biomarker differences in adverse cardiac events after chimeric antigen receptor T-Cell therapy: an exploratory study. Cardiooncology. 2023;9(1):18. doi: 10.1186/s40959-023-00170-5
  74. Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–847. doi: 10.1056/NEJMoa1609783
  75. Ghosh AK, Chen DH, Guha A, et al. CAR T cell therapy-related cardiovascular outcomes and management: systemic disease or direct cardiotoxicity? JACC CardioOncol. 2020;2(1):97–109. doi: 10.1016/j.jaccao.2020.02.011
  76. Lee RE, Lotze MT, Skibber JM, et al. Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol. 1989;7(1):7–20. doi: 10.1200/JCO.1989.7.1.7
  77. Margolin KA, Rayner AA, Hawkins MJ, et al. Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J Clin Oncol. 1989;7(4):486–498. doi: 10.1200/JCO.1989.7.4.486
  78. Borgers JSW, van Schijndel AW, van Thienen JV, et al. Clinical presentation of cardiac symptoms following treatment with tumor-infiltrating lymphocytes: diagnostic challenges and lessons learned. ESMO Open. 2024;9(2):102383. doi: 10.1016/j.esmoop.2024.102383
  79. Farmakis D, Parissis J, Filippatos G. Insights into onco-cardiology: atrial fibrillation in cancer. J Am Coll Cardiol. 2014;63(10):945–953. doi: 10.1016/j.jacc.2013.11.026
  80. Imperatori A, Mariscalco G, Riganti G, et al. Atrial fibrillation after pulmonary lobectomy for lung cancer affects long-term survival in a prospective single-center study. J Cardiothorac Surg. 2012;7:4. doi: 10.1186/1749-8090-7-4
  81. D’Souza M, Carlson N, Fosbøl E, et al. CHA2DS2-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. Eur J Prev Cardiol. 2018;25(6):651–658. doi: 10.1177/2047487318759858
  82. Hu WS, Lin CL. Comparison of CHA2DS2-VASc, CHADS2 and HATCH scores for the prediction of new-onset atrial fibrillation in cancer patients: A nationwide cohort study of 760,339 study participants with competing risk analysis. Atherosclerosis. 2017;266:205–211. doi: 10.1016/j.atherosclerosis.2017.10.007
  83. Raposeiras-Roubin S, Abu-Assi E, Marchán A, et al. Validation of embolic and bleeding risk scores in patients with atrial fibrillation and cancer. Am J Cardiol. 2022;180:44–51. doi: 10.1016/j.amjcard.2022.06.044
  84. McCracken C, Condurache DG, Szabo L, et al. Predictive performance of cardiovascular risk scores in cancer survivors from the UK Biobank. JACC CardioOncol. 2024;6(4):575–588. doi: 10.1016/j.jaccao.2024.05.015
  85. Fanola CL, Ruff CT, Murphy SA, et al. Efficacy and safety of edoxaban in patients with active malignancy and atrial fibrillation: analysis of the ENGAGE AF – TIMI 48 trial. J Am Heart Assoc. 2018;7(16):e008987. doi: 10.1161/JAHA.118.008987
  86. Shabtaie SA, Tan NY, Ward RC, et al. Left atrial appendage occlusion in patients with atrial fibrillation and cancer. JACC CardioOncol. 2023;5(2):203–212. doi: 10.1016/j.jaccao.2022.10.016
  87. Brown JR, Moslehi J, Ewer MS, et al. Incidence of and risk factors for major haemorrhage in patients treated with ibrutinib: an integrated analysis. Br J Haematol. 2019;184(4):558–569. doi: 10.1111/bjh.15690
  88. Van Gelder IC, Groenveld HF, Crijns HJ, et al. Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med. 2010;362(15):1363–1373. doi: 10.1056/NEJMoa1001337
  89. Schnabel RB, Haeusler KG, Healey JS, et al. Searching for atrial fibrillation poststroke: a white paper of the AF-SCREEN International Collaboration. Circulation. 2019;140(22):1834–1850. doi: 10.1161/CIRCULATIONAHA.119.040267
  90. Tran KV, Filippaios A, Noorishirazi K, et al. False atrial fibrillation alerts from smartwatches are associated with decreased perceived physical well-being and confidence in chronic symptoms management. Cardiol Cardiovasc Med. 2023;7(2):97–107. doi: 10.26502/fccm.92920314
  91. Christopoulos G, Attia ZI, Achenbach SJ, et al. Artificial intelligence electrocardiography to predict atrial fibrillation in patients with chronic lymphocytic leukemia. JACC CardioOncol. 2024;6(2):251–263. doi: 10.1016/j.jaccao.2024.02.006
  92. Yagi R, Goto S, Himeno Y, et al. Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms. Nat Commun. 2024;15(1):2536. doi: 10.1038/s41467-024-45733-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.