STUDY OF REINNERVATION PROCESS IN PATIENTS WITH 2 TYPEOF SPINAL MUSCULAR ATROPHY: CLINICAL EXPERIMENTAL STUDY



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Spinal muscle atrophy (SMA) of type 2 is an autosomal-recessive disease defined by a degenerative change in alpha-motor neurons of anterior horns. The disease is manifested in weakness of proximal muscles, pareses, respiratory disturbance and early death. Study of reinnervation process in patients with 2nd type of SMA can provide valuable information on a condition of adaptive mechanisms within the limits of neuron plasticity. According to electroneuromyography study in patients with 2nd type SMA reinnervation process is low intense. It was found out that concentration NGF (nerve growth factor) in serum of patients with 2nd type SMA is considerably higher than in control group. We studied the influence of blood serum of patients with 2 type SMA on growth neurites of sensory ganglia of 10-12 days old chicken embryos in organotypic culture. For the first time it was shown that blood serum of patients with 2nd type SMA dose-dependent inhibits of growth neurites of sensory ganglia. Apparently, neurite-inhibitory effect is caused by high concentration of neurotrophins in patient serum, due to that the reinnervation mechanisms in 2 type SMA patients are not so efficient.

Full Text

Restricted Access

About the authors

M G Sokolova

North-West State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia

V A Penniyaynen

Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia

M V Rezvantsev

Military Medical Academy named after S.M. Kirov, Saint-Petersburg, Russia

S V Lobzin

North-West State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia

N Yu Aleksandrov

North-West State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russia

References

  1. Cuppini, R. Time course of sprouting during muscle reinnervation / R. Cuppini, [et al.] // Muscle & Nerve. - 1990. - Vol.13. - Р. 1027-1031.
  2. Huang, E. J. Neurotrophins. Roles in neuronal development and function / E. J. Huang [et al.] // Annu. Rev. Neurosci. - 2001. - Vol.24. - Р. 677-736.
  3. Levi-Montalchini, R. The nerve growth factor. 35 years later / R. Levi-Montalchini // Science. - 1987. - Vol.237. - P. 1154-1162.
  4. Гаврилюк, Б.К. Органотипическое культивирование тканей / Б.К. Гаврилюк, В.Л. Сафронов // М.: Наука - 1983. -128 с.
  5. Rohrer, H. Presence and disappearance of nerve growth factor receptors on sensory neurons in culture / H. Rohrer [et al.] // Dev. Biol. - 1982. - Vol.89. - P. 309-315.
  6. Акоев, Г.Н. Нейротрофическая регуляция нервной ткани / Г.Н. Акоев // СПб. - Наука. - 1997. - 149 с.
  7. Rydel, R.E. cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor / R.E. Rydel, [et al.] // Proc. Natl. Acad. Sci. U.S.A. - 1988. - Vol.85. - Р.1257-1261.
  8. Пеннияйнен, В.А. Влияние оуабаина на рост нейритов чувствительных нейронов в органотипической культуре ткани / В.А. Пеннияйнен [и др.] // Цитология. - 2003. - Т. 45, №4. - С. 377-379.
  9. Lopatina, E.V. Modulation of signal-transducing function of neuronal membrane Na+,K+-ATPase by endogenous ouabain and low-power infrared radiation leads to pain relief / E.V. Lopatina [et al.] // Med. Chem. - 2012. - Vol.8, №1. - P. 33-39.
  10. Команцев, В.Н. Алгоритмы клинико-электромиографической диагностики повреждений периферических нервов для неврологов и миографистов / В.Н. Команцев // СПб. - Изд-во Система. - 2007.- 64 с.
  11. Соколова, М.Г. Спинальная мышечная атрофия у детей: этиология, патогенез, диагностика и принципы лечения / М.Г. Соколова [и др.] // Вестн. СЗГМУ им. И.И. Мечникова. - 2013. - Т. 5, № 4. - С. 108-114.
  12. Yamashita T. Molecular mechanism and regulation of axon growth inhibition / Т.Yamashita [et al.] // J. Biol. -2007. -Vol.59, №12. - Р.1347-1353.
  13. Акоева, Г.Н. Стимулирующее влияние цереброспинальной жидкости больных эпилепсией на рост нейритов чувствительных нейронов в культуре ткани/ Г.Н. Акоева [и др.] // Физиология человека. - 1995. - Т. 21, №4. - С. 156-162.
  14. Давыдовская, М.В. Влияние цереброспинальной жидкости больных нейроинфекциями на экспланты спиномозговых ганглиев / М.В. Давыдовская [и др.] // Физиология человека. - 1995. - Т. 21, №4. - С. 150-155.
  15. Yongwoo, J. Axonal Neuropathy-associated TRPV4 Regulates Neurotrophic Factor-derived Axonal Growth / J. Yongwoo [et al.] // J. Biol. Chem. - 2012. - Vol. 287, № 8. - Р. 6014-6024.
  16. Benson M.D. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth / M.D. Benson [et al.] // Proc Natl Acad Sci U S A. - 2005. - Vol.102. - Р.10694-10699.
  17. Williams, G. Ganglioside Inhibition of Neurite Outgrowth Requires Nogo Receptor Function: Identification of Interaction Sites and Development of Novel Antagonists / G.Williams [et al.] // J. Biol. Chem. - 2008. - Vol.283. - P. 16641-16652.
  18. Goldberg, J.L. An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells / J.L. Goldberg [et al.]//J. Neurosci. - 2004. - Vol.24. - Р. 4989-4999.
  19. Hannila, S.S. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury/S.S. Hannila [et al.] // Exp. Neurol. - 2008. - Vol.209. - Р.321-332.
  20. Miyashita, T. Signaling Mediates Axon Growth Inhibition and Limits Functional Recovery after Spinal Cord Injury / Т.Miyashita [et al.] // J. Neurotrauma. - 2009. - Vol.233. - Р. 43-47
  21. Li, S. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury / S. Li [et al.] // J. Neurosci. -2004. - Vol.24. - Р. 10511-10520.
  22. Shen, Y. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration / Y. Shen, [et al.] // Science. - 2009. - Vol.326. - Р. 592-596.
  23. Monnier, P.P. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar/ P.P. Monnier [et al.] // Mol. Cell. Neurosci. - 2003. - Vol.22. - Р. 319-330.
  24. Wanner, I.B. A new in vitro model of the glial scar inhibits axon growth / I.B. Wanner [et al.] // Glia. - 2008. - Vol.56. - Р. 1691-1709.
  25. Meakin, S.O. Molecular investigations on the high-affinity nerve growth factor receptor / S.O. Meakin [et al.] // Neuron. - 1991. - Vol.6(1) - Р.153-63.
  26. Lee, X. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex / X. Lee [et al.] // Nat. Neurosci. - 2004. - Vol.7. - Р. 221-228.
  27. Li, S. Differential actions of nerve growth factor receptors TrkA and p75NTR in a rat model of epileptogenesis /S. Li [et al.]//Mol Cell Neurosci.- 2005.- №29(2). - Р.162-172.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Sokolova M.G., Penniyaynen V.A., Rezvantsev M.V., Lobzin S.V., Aleksandrov N.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies