Clinical and genetic predictors of cardiovascular events as the risk of an unfavorable course and outcomes of novel coronavirus infection
- Authors: Bratilova E.S.1, Kachnov V.A.1, Tyrenko V.V.1, Kolyubaeva S.N.1
-
Affiliations:
- Military Medical Academy named after S.M. Kirov
- Issue: Vol 14, No 1 (2022)
- Pages: 5-16
- Section: Reviews
- Submitted: 08.11.2021
- Accepted: 23.11.2021
- Published: 17.06.2022
- URL: https://journals.eco-vector.com/vszgmu/article/view/87291
- DOI: https://doi.org/10.17816/mechnikov87291
- ID: 87291
Cite item
Abstract
Numerous data indicate a high incidence of cardiovascular diseases against the background of a novel coronavirus infection, including initially healthy individuals. The development of complications such as cardiac rhythm disturbances, myocardial injury, acute coronary syndrome aggravates the severity of the disease and the prognosis. Moreover, signs of structural and functional damage of the cardiovascular system are detected after recovery, which makes prevention issues especially relevant. Various non-modifiable risk factors for the severe course of COVID-19, such as gender, age, heredity, race, environment, can determine the development of complications, including heart disease. In this matter, genetic characteristics are also important. The literature review presents possible genetic predictors and the mechanism of their influence on the development of cardiovascular complications and the severe course of novel coronavirus infection. The identification of specific genetic predictors can determine biological mechanisms that are relevant to diagnostic and treatment strategies. Moreover, recognizing people at high or low risk of severe COVID-19 can contribute to understanding the course of infection in different people and the development of cardiovascular complications. In addition, the determination of genetic markers contributes to the early detection of developing cardiovascular complications against the background of the novel coronavirus infection and elaboration of the personalized prevention strategy.
Full Text

About the authors
Ekaterina S. Bratilova
Military Medical Academy named after S.M. Kirov
Email: guanilatciclaza@mail.ru
ORCID iD: 0000-0003-2153-2121
SPIN-code: 4647-2564
Russian Federation, Saint Petersburg
Vasilii A. Kachnov
Military Medical Academy named after S.M. Kirov
Author for correspondence.
Email: kvasa@mail.ru
ORCID iD: 0000-0002-6601-5366
SPIN-code: 2084-0290
MD, Cand. Sci. (Med.)
Russian Federation, 6A, Akademika Lebedeva St., Saint Petersburg, 194044Vadim V. Tyrenko
Military Medical Academy named after S.M. Kirov
Email: vadim_tyrenko@mail.ru
ORCID iD: 0000-0002-0470-1109
SPIN-code: 3022-5038
Scopus Author ID: 6508262196
MD, Dr. Sci. (Med.), Professor
Russian Federation, Saint PetersburgSvetlana N. Kolyubaeva
Military Medical Academy named after S.M. Kirov
Email: ksnwma@mail.ru
SPIN-code: 2077-2557
Dr. Sci. (Biol.)
Russian Federation, Saint PetersburgReferences
- COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center. Available from: https://coronavirus.jhu.edu/map.html. Accessed: Nov 3, 2021.
- Madjid M, Miller CC, Zarubaev VV, et al. Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34,892 subjects. Eur Heart J. 2007;28(10):1205–1210. doi: 10.1093/eurheartj/ehm035
- Kwong JC, Schwartz KL, Campitelli MA. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018;378(26):2540–2541. DOI: 10.1056/ NEJMc1805679
- Madjid M, Connolly AT, Nabutovsky Y, et al. Effect of high influenza activity on risk of ventricular arrhythmias requiring therapy in patients with implantable cardiac defibrillators and cardiac resynchronization therapy defibrillators. Am J Cardiol. 2019;124(1):44–50. doi: 10.1016/j.amjcard.2019.04.011
- Kytömaa S, Hegde S, Claggett B, et al. Association of influenza-like illness activity with hospitalizations for heart failure: The atherosclerosis risk in Communities Study. JAMA Cardiol. 2019;4(4):363–369. doi: 10.1001/jamacardio.2019.0549
- Kryukov EV, Shulenin KS, Cherkashin DV, et al. Patogenez i klinicheskie proyavleniya porazheniya serdechno-sosudistoy sistemy u patsientov s novoy koronavirusnoy infektsiey (COVID-19): uchebnoe posobie. Saint Petersburg: Veda Print; 2021. (In Russ.)
- Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80(6):639–645. doi: 10.1016/j.jinf.2020.03.019
- Du Y, Tu L, Zhu P, et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A Retrospective Observational Study. Am J Respir Crit Care Med. 2020;201(11):1372–1379. doi: 10.1164/rccm.202003-0543OC
- Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. doi: 10.1136/bmj.m1091
- Zhao YH, Zhao L, Yang XC, Wang P. Cardiovascular complications of SARS-CoV-2 infection (COVID-19): a systematic review and meta-analysis. Rev Cardiovasc Med. 2021;22(1):159–165. doi: 10.31083/j.rcm.2021.01.238
- Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810. doi: 10.1001/jamacardio.2020.0950
- Qiang Z, Wang B, Garrett BC, et al. Coronavirus disease 2019: a comprehensive review and meta-analysis on cardiovascular biomarkers. Curr Opin Cardiol. 2021;36(3):367–373. doi: 10.1097/HCO.0000000000000851
- Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–1273. doi: 10.1001/jamacardio.2020.3557
- Myhre PL, Heck SL, Skranes JB, et al. Cardiac pathology 6 months after hospitalization for COVID-19 and association with the acute disease severity. Am Heart J. 2021;242:61–70. doi: 10.1016/j.ahj.2021.08.001
- Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259–260. doi: 10.1038/s41569-020-0360-5
- Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352–2371. doi: 10.1016/j.jacc.2020.03.031
- Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097–1100. doi: 10.1093/cvr/cvaa078
- SeyedAlinaghi S, Mehrtak M, MohsseniPour M, et al. Genetic susceptibility of COVID-19: a systematic review of current evidence. Eur J Med Res. 2021;26(1):46. doi: 10.1186/s40001-021-00516-8
- Fodor A, Tiperciuc B, Login C, et al. Endothelial dysfunction, inflammation, and oxidative stress in COVID-19-mechanisms and therapeutic targets. Oxid Med Cell Longev. 2021;2021:8671713. doi: 10.1155/2021/8671713
- Henry BM, Vikse J, Benoit S, et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020;507:167–173. doi: 10.1016/j.cca.2020.04.027
- Senchenkova EY, Russell J, Esmon CT, Granger DN. Roles of coagulation and fibrinolysis in angiotensin II-enhanced microvascular thrombosis. Microcirculation. 2014;21(5):401–407. doi: 10.1111/micc.12120
- Hamadeh A, Aldujeli A, Briedis K, et al. Characteristics and outcomes in patients presenting with COVID-19 and ST-segment elevation myocardial infarction. Am J Cardiol. 2020;131:1–6. doi: 10.1016/j.amjcard.2020.06.063
- Vremennye metodicheskie rekomendatsii: profilaktika, diagnostika i lechenie novoy koronavirusnoy infektsii (COVID-19). Versiya 13 (14.10.2021) [Internet]. Ministerstvo zdravookhraneniya Rossiyskoy Federatsii. (In Russ.). Available from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdf. Accessed: Dec 1, 2021.
- Corrales-Medina VF, Madjid M, Musher DM. Role of acute infection in triggering acute coronary syndromes. Lancet Infect Dis. 2010;10(2):83–92. doi: 10.1016/S1473-3099(09)70331-7
- Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7
- Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr. 2020;14(3):247–250. doi: 10.1016/j.dsx.2020.03.013
- Babapoor-Farrokhran S, Rasekhi RT, Gill D, et al. Arrhythmia in COVID-19. SN Compr Clin Med. 2020;2(9):1430–1435. doi: 10.1007/s42399-020-00454-2
- Lazzerini PE, Capecchi PL, Laghi-Pasini F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur Heart J. 2017;38(22):1717–1727. doi: 10.1093/eurheartj/ehw208
- Kochi AN, Tagliari AP, Forleo GB, et al. Cardiac and arrhythmic complications in patients with COVID-19. J Cardiovasc Electrophysiol. 2020;31(5):1003–1008. doi: 10.1111/jce.14479
- Wang Y, Wang Z, Tse G, et al. Cardiac arrhythmias in patients with COVID-19. J Arrhythm. 2020;36(5):827–836. doi: 10.1002/joa3.12405
- Gopinathannair R, Merchant FM, Lakkireddy DR, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020;59(2):329–336. doi: 10.1007/s10840-020-00789-9
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3
- Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–818. doi: 10.1001/jamacardio.2020.1017
- Coto E, Avanzas P, Gómez J. The renin-angiotensin-aldosterone system and coronavirus disease 2019. Eur Cardiol. 2021;16:e07. doi: 10.15420/ecr.2020.30
- Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis. 2020;222(4):556–563. doi: 10.1093/infdis/jiaa332
- Yamamoto N, Yamamoto R, Ariumi Y, et al. Does genetic predisposition contribute to the exacerbation of COVID-19 symptoms in individuals with comorbidities and explain the huge mortality disparity between the East and the West? Int J Mol Sci. 2021;22(9):5000. doi: 10.3390/ijms22095000
- Hatami N, Ahi S, Sadeghinikoo A, et al. Worldwide ACE (I/D) polymorphism may affect COVID-19 recovery rate: an ecological meta-regression. Endocrine. 2020;68(3):479–484. doi: 10.1007/s12020-020-02381-7
- Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–584. doi: 10.1016/j.cjca.2017.12.005
- Margaglione M, Grandone E, Vecchione G, et al. Plasminogen activator inhibitor-1 (PAI-1) antigen plasma levels in subjects attending a metabolic ward: relation to polymorphisms of PAI-1 and angiontensin converting enzyme (ACE) genes. Arterioscler Thromb Vasc Biol. 1997;17(10):2082–2087. doi: 10.1161/01.atv.17.10.2082
- De Loyola MB, Dos Reis TTA, de Oliveira GXLM, et al. Alpha-1-antitrypsin: A possible host protective factor against Covid-19. Rev Med Virol. 2021;31(2):e2157. doi: 10.1002/rmv.2157
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052
- Janciauskiene S, Welte T. Well-known and less well-known functions of Alpha-1 antitrypsin. Its role in chronic obstructive pulmonary disease and other disease developments. Ann Am Thorac Soc. 2016;13 Suppl 4:S280–S288. doi: 10.1513/AnnalsATS.201507-468KV
- Pott GB, Chan ED, Dinarello CA, Shapiro L. Alpha-1-antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood. J Leukoc Biol. 2009;85(5):886–895. doi: 10.1189/jlb.0208145
- Guo J, Huang Z, Lin L, Lv J. Coronavirus Disease 2019 (COVID-19) and cardiovascular disease: A viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J Am Heart Assoc. 2020;9(7):e016219. doi: 10.1161/JAHA.120.016219
- Hendren NS, Drazner MH, Bozkurt B, Cooper LTJr. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020;141(23):1903–1914. doi: 10.1161/CIRCULATIONAHA.120.047349
- Biscetti F, Rando MM, Nardella E, et al. Cardiovascular disease and SARS-CoV-2: the role of host immune response versus direct viral injury. Int J Mol Sci. 2020;21(21):8141. doi: 10.3390/ijms21218141
- Zhu H, Rhee JW, Cheng P, et al. Cardiovascular complications in patients with COVID-19: Consequences of viral toxicities and host immune response. Curr Cardiol Rep. 2020;22(5):32. doi: 10.1007/s11886-020-01292-3
- Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–2629. doi: 10.1172/JCI137244
- Hammoudeh SM, Hammoudeh AM, Bhamidimarri PM, et al. Systems immunology analysis reveals the contribution of pulmonary and extrapulmonary tissues to the immunopathogenesis of severe COVID-19 patients. Front Immunol. 2021;12:595150. doi: 10.3389/fimmu.2021.595150
- Troshina EA, Yukina MYu, Nuralieva NF, Mokrysheva NG. The role of HLA genes: from autoimmune diseases to COVID-19. Problems of Endocrinology. 2020;66(4):9–15. (In Russ.). doi: 10.14341/probl12470
- Zhu F, Sun Y, Wang M, et al. Correlation between HLA-DRB1, HLA-DQB1 polymorphism and autoantibodies against angiotensin AT(1) receptors in Chinese patients with essential hypertension. Clin Cardiol. 2011;34(5):302–308. doi: 10.1002/clc.20852
- Davies RW, Wells GA, Stewart AF, et al. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circ Cardiovasc Genet. 2012;5(2):217–225. doi: 10.1161/CIRCGENETICS.111.961243
- Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a Report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648
- COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–477. doi: 10.1038/s41586-021-03767-x
- Smith JD. Apolipoprotein E4: an allele associated with many diseases. Ann Med. 2000;32(2):118–127. DOI: 10.3109/ 07853890009011761
- Wang H, Yuan Z, Pavel MA, et al. The role of high cholesterol in age-related COVID19 lethality. bioRxiv. 2021. doi: 10.1101/2020.05.09.086249
- Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 genotype predicts severe COVID-19 in the UK Biobank Community Cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231–2232. doi: 10.1093/gerona/glaa131
- Zong Y, Li X. Identification of causal genes of COVID-19 using the SMR method. Front Genet. 2021;12:690349. doi: 10.3389/fgene.2021.690349
- Taus F, Salvagno G, Canè S, et al. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia. Arterioscler Thromb Vasc Biol. 2020;40(12):2975–2989. doi: 10.1161/ATVBAHA.120.315175
- Kang S, Tanaka T, Inoue H, et al. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci USA. 2020;117(36):22351–22356. doi: 10.1073/pnas.2010229117
- Zhang F, Mears JR, Shakib L, et al. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 2021;13(1):64. doi: 10.1186/s13073-021-00881-3
- Lee JS, Park S, Jeong HW, et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci Immunol. 2020;5(49):eabd1554. doi: 10.1126/sciimmunol.abd1554
- Korakas E, Ikonomidis I, Kousathana F, et al. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab. 2020;319(1):E105–E109. doi: 10.1152/ajpendo.00198.2020
- Dimopoulos G, de Mast Q, Markou N, et al. Favorable anakinra responses in severe Covid-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell Host Microbe. 2020;28(1):117–123.e1. doi: 10.1016/j.chom.2020.05.007
- Ikonomidis I, Pavlidis G, Katsimbri P, et al. Differential effects of inhibition of interleukin 1 and 6 on myocardial, coronary and vascular function. Clin Res Cardiol. 2019;108(10):1093–1101. doi: 10.1007/s00392-019-01443-9
- Frangogiannis NG, Entman ML. Chemokines in myocardial ischemia. Trends Cardiovasc Med. 2005;15(5):163–169. doi: 10.1016/j.tcm.2005.06.005
- Buoncervello M, Maccari S, Ascione B, et al. Inflammatory cytokines associated with cancer growth induce mitochondria and cytoskeleton alterations in cardiomyocytes. J Cell Physiol. 2019;234(11):20453–20468. doi: 10.1002/jcp.28647
Supplementary files
