Features of interleukin status in patients with type 1 diabetes mellitus

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A hundred years have passed since the first use of insulin as the main means of therapy for type 1 diabetes mellitus. During this time, significant progress has been made in the development of insulin therapy, including the development of new insulin formulations and methods of its delivery. At the same time, over the years, expanding knowledge about the immunopathogenesis of type 1 diabetes mellitus, doctors are trying to reach a completely new level of possibilities in the treatment of this disease. At this level, methods of immunotherapeutic effects on those links of autoimmune chains will become available, which today limit both the therapy of patients with type 1 diabetes and the development of the idea of stem-cells transplantation due to the lack of a holistic understanding of ways to overcome post-transplant immune aggression against β-cells.

The review summarizes the current understanding of known interleukins involved as the most important intermediaries in the phases of initiation and immuno-mediated destruction of pancreatic β-cells. The achievements in the study of the role of key interleukins in the pathophysiology of autoimmune diabetes for marking potential application points of immunomodulatory targeted therapy are considered.

Full Text

Restricted Access

About the authors

Mikhail E. Mailyan

Military Medical Academy named after S.M. Kirov

Author for correspondence.
Email: mailyan_mikhail@mail.ru
ORCID iD: 0000-0002-3387-5861
SPIN-code: 2983-9071

MD

Russian Federation, Saint Petersburg

Maksim I. Pugachev

Military Medical Academy named after S.M. Kirov

Email: kenig.max@mail.ru
ORCID iD: 0000-0001-5523-8233
SPIN-code: 1549-6552

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Sergey B. Shustov

Military Medical Academy named after S.M. Kirov; North-Western State Medical University named after I.I. Mechnikov

Email: sbs5555@mail.ru
SPIN-code: 5237-2036
ResearcherId: O-9450-2015

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Vladimir V. Salukhov

Military Medical Academy named after S.M. Kirov

Email: vlasaluk@yandex.ru
ORCID iD: 0000-0003-1851-0941
SPIN-code: 4531-6011
Scopus Author ID: 55804184100

MD, Dr. Sci. (Med.), Assistant Professor

Russian Federation, Saint Petersburg

Pavel A. Livarsky

Military Medical Academy named after S.M. Kirov

Email: livarsly.98@gmail.com
ORCID iD: 0000-0003-0382-266X
SPIN-code: 1080-4234

MD

Russian Federation, Saint Petersburg

References

  1. Lu J, Liu J, Li L, et al. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunology. 2020;9(3):e1122. doi: 10.1002/cti2.1122
  2. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117(4):1162–1172. doi: 10.1378/chest.117.4.1162
  3. Leite NC, Pelayo GC, Melton DA. Genetic manipulation of stress pathways can protect stem-cell-derived islets from apoptosis in vitro. Stem Cell Reports. 2022;17(4):766–774. doi: 10.1016/j.stemcr.2022.01.018
  4. International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels: IDF; 2019.
  5. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in Russian Federation: prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, status 2017. Diabetes mellitus. 2018;21(3):144–159. (In Russ.). doi: 10.14341/DM9686
  6. Eizirik DL, Sammeth M, Bouckenooghe T, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 2012;8(3):e1002552. doi: 10.1371/journal.pgen.1002552
  7. Insel R, Dunne JL. JDRF’s vision and strategy for prevention of type 1 diabetes. Pediatr Diabetes. 2016;17 Suppl 22:87–92. doi: 10.1111/pedi.12326
  8. Todd JA, Evangelou M, Cutler AJ, et al. Regulatory T cell responses in participants with type 1 diabetes after a single dose of interleukin-2: A non-randomised, open label, adaptive dose-finding trial. PLoS Med. 2016;13(10):e1002139. doi: 10.1371/journal.pmed.1002139
  9. Primavera M, Giannini C, Chiarelli F. Prediction and prevention of type 1 diabetes. Front Endocrinol (Lausanne). 2020;11:248. doi: 10.3389/fendo.2020.00248
  10. Melton D. The promise of stem cell-derived islet replacement therapy. Diabetologia. 2021;64(5):1030–1036. doi: 10.1007/s00125-020-05367-2
  11. Siehler J, Blochinger AK, Meier M, Lickert H. Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov. 2021;20(12):920–940. doi: 10.1038/s41573-021-00262-w
  12. Shen S, Sckisel G, Sahoo A, et al. Engineered IL-21 cytokine muteins fused to Anti-PD-1 antibodies can improve CD8+ T cell function and anti-tumor immunity. Front Immunol. 2020;11:832. doi: 10.3389/fimmu.2020.00832
  13. Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007;39(9):1074–1082. doi: 10.1038/ng2102
  14. Lenardo MJ. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature. 1991;353(6347):858–861. doi: 10.1038/353858a0
  15. Johnston RJ, Choi YS, Diamond JA, et al. STAT5 is a potent negative regulator of TFH cell differentiation. J Exp Med. 2012;209:243–250. doi: 10.1084/jem.20111174
  16. Serr I, Daniel C. Regulation of T follicular helper cells in islet autoimmunity. Front Immunol. 2018;9:1729. doi: 10.3389/fimmu.2018.01729
  17. Shao F, Zheng P, Yu D, et al. Follicular helper T cells in type 1 diabetes. FASEB J. 2020;34(1):30–40. doi: 10.1096/fj.201901637R
  18. Yang XP, Ghoreschi K, Steward-Tharp SM, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12(3):247–254. doi: 10.1038/ni.1995
  19. Rosenzwajg M, Churlaud G, Mallone R, et al. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun. 2015;58:48–58. doi: 10.1016/j.jaut.2015.01.001
  20. Hartemann A, Bensimon G, Payan CA, et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1(4):295–305. doi: 10.1016/S2213-8587(13)70113-X
  21. Grinberg-Bleyer Y, Baeyens A, You S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207(9):1871–1878. doi: 10.1084/jem.20100209
  22. Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281(1):154–168. doi: 10.1111/imr.12619
  23. Dalmas E, Lehmann FM, Dror E, et al. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity. 2017;47(5):928–942.e7. doi: 10.1016/j.immuni.2017.10.015
  24. Miller AM, Asquith DL, Hueber AJ, et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res. 2010;107(5):650–658. doi: 10.1161/CIRCRESAHA.110.218867
  25. Schiering C, Krausgruber T, Chomka A, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513(7519):564–568. doi: 10.1038/nature13577
  26. Vasanthakumar A, Moro K, Xin A, et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol. 2015;16(3):276–285. doi: 10.1038/ni.3085
  27. Peine M, Marek RM, Löhning M. IL-33 in T cell differentiation, function, and immune homeostasis. Trends Immunol. 2016;37(5):321–333. doi: 10.1016/j.it.2016.03.007
  28. Lu J, Liang Y, Zhao J, et al. Interleukin-33 prevents the development of autoimmune diabetes in NOD mice. Int Immunopharmacol. 2019;70:9–15. doi: 10.1016/j.intimp.2019.02.018
  29. Ryba-Stanislawowska M, Werner P, Skrzypkowska M, et al. IL-33 Effect on quantitative changes of CD4+CD25highFOXP3+ Regulatory T cells in children with type 1 diabetes. Mediators Inflamm. 2016;2016:9429760. doi: 10.1155/2016/9429760
  30. Wei H, Li B, Sun A, Guo F. Interleukin-10 family cytokines immunobiology and structure. Adv Exp Med Biol. 2019;1172:79–96. doi: 10.1007/978-981-13-9367-9_4
  31. Ouyang W, Rutz S, Crellin NK, et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109. doi: 10.1146/annurev-immunol-031210-101312
  32. Robert S, Gysemans C, Takiishi T, et al. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes. 2014;63(8):2876–2887. doi: 10.2337/db13-1236
  33. Kleffel S, Vergani A, Tezza S, et al. Interleukin-10+ regulatory B cells arise within antigen-experienced CD40+ B cells to maintain tolerance to islet autoantigens. Diabetes. 2015;64(1):158–171. doi: 10.2337/db13-1639
  34. Xu A, Zhu W, Li T, et al. Interleukin-10 gene transfer into insulin-producing β cells protects against diabetes in non-obese diabetic mice. Mol Med Rep. 2015;12(3):3881–3889. doi: 10.3892/mmr.2015.3809
  35. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. 2003;73(2):213–224. doi: 10.1189/jlb.0602313
  36. Wawrocki S, Druszczynska M, Kowalewicz-Kulbat M, Rudnicka W. Interleukin 18 (IL-18) as a target for immune intervention. Acta Biochim Pol. 2016;63(1):59–63. doi: 10.18388/abp.2015_1153
  37. Esmailbeig M, Ghaderi A. Interleukin-18: a regulator of cancer and autoimmune diseases. Eur Cytokine Netw. 2017;28(4):127–140. doi: 10.1684/ecn.2018.0401
  38. Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223:20–38. doi: 10.1111/j.1600-065X.2008.00624.x
  39. Prencipe G, Bracaglia C, De Benedetti F. Interleukin-18 in pediatric rheumatic diseases. Curr Opin Rheumatol. 2019;31(5):421–427. doi: 10.1097/BOR.0000000000000634
  40. Schluns KS, Williams K, Ma A, et al. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol. 2002;168(10):4827–4831. doi: 10.4049/jimmunol.168.10.4827
  41. Dubois S, Mariner J, Waldmann TA, Tagaya Y. IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity. 2002;17(5):537–547. doi: 10.1016/s1074-7613(02)00429-6
  42. Verbist KC, Rose DL, Cole CJ, et al. IL-15 participates in the respiratory innate immune response to influenza virus infection. PLoS One. 2012;7(5):e37539. doi: 10.1371/journal.pone.0037539
  43. Ylipaasto P, Kutlu B, Rasilainen S, et al. Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia. 2005;48(8):1510–1522. doi: 10.1007/s00125-005-1839-7
  44. Chen J, Feigenbaum L, Awasthi P, et al. Insulin-dependent diabetes induced by pancreatic beta cell expression of IL-15 and IL-15Rα. Proc Natl Acad Sci USA. 2013;110(33):13534–13539. doi: 10.1073/pnas.1312911110
  45. Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol. 2007;19(6):652–657. doi: 10.1016/j.coi.2007.07.020
  46. Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. 2002;71(1):1–8.
  47. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448(7152):484–487. doi: 10.1038/nature05970
  48. Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8(9):967–974. doi: 10.1038/ni1488
  49. Jain R, Tartar DM, Gregg RK, et al. Innocuous IFNgamma induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J Exp Med. 2008;205(1):207–218. doi: 10.1084/jem.20071878
  50. Emamaullee JA, Davis J, Merani S, et al. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes. 2009;58(6):1302–1311. doi: 10.2337/db08-1113
  51. Arif S, Moore F, Marks K, et al. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated beta-cell death. Diabetes. 2011;60(8):2112–2119. doi: 10.2337/db10-1643
  52. Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014;70(1):11–20. doi: 10.1016/j.cyto.2014.05.024
  53. Siewko K, Maciulewski R, Zielinska-Maciulewska A, et al. Interleukin-6 and interleukin-15 as possible biomarkers of the risk of autoimmune diabetes development. Biomed Res Int. 2019;2019:4734063. doi: 10.1155/2019/4734063
  54. Kieffer TJ, Heller RS, Leech CA, et al. Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes. 1997;46(6):1087–1093. doi: 10.2337/diab.46.6.1087
  55. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNFalpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–668. doi: 10.1126/science.271.5249.665
  56. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295. doi: 10.1101/cshperspect.a016295
  57. Sandler S, Bendtzen K, Eizirik DL, Welsh M. Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro. Endocrinology. 1990;126(2):1288–1294. doi: 10.1210/endo-126-2-1288
  58. Wedrychowicz A, Dziatkowiak H, Sztefko K, Wedrychowicz A. Interleukin-6 (IL-6) and IGF-IGFBP system in children and adolescents with type 1 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2004;112(8):435–439. doi: 10.1055/s-2004-821189
  59. Chen Y-L, Qiao Y-C, Pan Y-H, et al. Correlation between serum interleukin-6 level and type 1 diabetes mellitus: A systematic review and meta-analysis. Cytokine. 2017;94:14–20. doi: 10.1016/j.cyto.2017.01.002
  60. Long D, Chen Y, Wu H, et al. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun. 2019;99:1–14. doi: 10.1016/j.jaut.2019.01.013
  61. McGuire HM, Vogelzang A, Ma CS, et al. A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells target accessory organs of the digestive system in autoimmunity. Immunity. 2011;34(4):602–615. doi: 10.1016/j.immuni.2011.01.021
  62. Ferreira RC, Simons HZ, Thompson WS, et al. IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients. Diabetologia. 2015;58(4):781–790. doi: 10.1007/s00125-015-3509-8
  63. Fonseca VR, Agua-Doce A, Maceiras AR, et al. Human blood Tfr cells are indicators of ongoing humoral activity not fully licensed with suppressive function. Sci Immunol. 2017;2(14):eaan1487. doi: 10.1126/sciimmunol.aan1487
  64. Viisanen T, Ihantola EL, Nanto-Salonen K, et al. Circulating CXCR5+ PD-1+ ICOS+ follicular T-helper cells are increased close to the diagnosis of type 1 diabetes in children with multiple autoantibodies. Diabetes. 2017;66(2):437–447. doi: 10.2337/db16-0714
  65. Xu X, Shen M, Zhao R, et al. Follicular regulatory T Cells are associated with βCell autoimmunity and the development of type 1 diabetes. J Clin Endocrinol Metab. 2019;jc.2019–00093. doi: 10.1210/jc.2019-00093

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A graph of the current global incidence of diabetes mellitus with an expected future prognosis according to the International Diabetes Federation

Download (88KB)
3. Fig. 2. Some mechanisms of interleukin-mediated immune autoreactivity in the pathogenesis of type 1 diabetes mellitus. Solid arrow — positive effect, dotted arrow — negative effect, T-shaped arrow — products. (For a detailed description, refer to the text.) IL — interleukin; Bcl6 — B-cell CLL/lymphoma 6; CD — cluster of differentiation; ST2 — for growth STimulation expressed gene 2; FoxP3 — forkhead box P3, scurfin; STAT5 — signal transducer and activator of transcription 5; TGF-β — transforming growth factor beta; +R-ST2 — specific receptor of stimulating growth factor ST2

Download (472KB)

Copyright (c) 2022 Mailyan M.E., Pugachev M.I., Shustov S.B., Salukhov V.V., Livarsky P.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies