Features of interleukin status in patients with type 1 diabetes mellitus
- Authors: Mailyan M.E.1, Pugachev M.I.1, Shustov S.B.1,2, Salukhov V.V.1, Livarsky P.A.1
-
Affiliations:
- Military Medical Academy named after S.M. Kirov
- North-Western State Medical University named after I.I. Mechnikov
- Issue: Vol 14, No 2 (2022)
- Pages: 23-34
- Section: Reviews
- URL: https://journals.eco-vector.com/vszgmu/article/view/107281
- DOI: https://doi.org/10.17816/mechnikov107281
Cite item
Abstract
A hundred years have passed since the first use of insulin as the main means of therapy for type 1 diabetes mellitus. During this time, significant progress has been made in the development of insulin therapy, including the development of new insulin formulations and methods of its delivery. At the same time, over the years, expanding knowledge about the immunopathogenesis of type 1 diabetes mellitus, doctors are trying to reach a completely new level of possibilities in the treatment of this disease. At this level, methods of immunotherapeutic effects on those links of autoimmune chains will become available, which today limit both the therapy of patients with type 1 diabetes and the development of the idea of stem-cells transplantation due to the lack of a holistic understanding of ways to overcome post-transplant immune aggression against β-cells.
The review summarizes the current understanding of known interleukins involved as the most important intermediaries in the phases of initiation and immuno-mediated destruction of pancreatic β-cells. The achievements in the study of the role of key interleukins in the pathophysiology of autoimmune diabetes for marking potential application points of immunomodulatory targeted therapy are considered.
Full Text

About the authors
Mikhail E. Mailyan
Military Medical Academy named after S.M. Kirov
Author for correspondence.
Email: mailyan_mikhail@mail.ru
ORCID iD: 0000-0002-3387-5861
SPIN-code: 2983-9071
MD
Russian Federation, Saint PetersburgMaksim I. Pugachev
Military Medical Academy named after S.M. Kirov
Email: kenig.max@mail.ru
ORCID iD: 0000-0001-5523-8233
SPIN-code: 1549-6552
MD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgSergey B. Shustov
Military Medical Academy named after S.M. Kirov; North-Western State Medical University named after I.I. Mechnikov
Email: sbs5555@mail.ru
SPIN-code: 5237-2036
ResearcherId: O-9450-2015
MD, Dr. Sci. (Med.), Professor
Russian Federation, Saint Petersburg; Saint PetersburgVladimir V. Salukhov
Military Medical Academy named after S.M. Kirov
Email: vlasaluk@yandex.ru
ORCID iD: 0000-0003-1851-0941
SPIN-code: 4531-6011
Scopus Author ID: 55804184100
MD, Dr. Sci. (Med.), Assistant Professor
Russian Federation, Saint PetersburgPavel A. Livarsky
Military Medical Academy named after S.M. Kirov
Email: livarsly.98@gmail.com
ORCID iD: 0000-0003-0382-266X
SPIN-code: 1080-4234
MD
Russian Federation, Saint PetersburgReferences
- Lu J, Liu J, Li L, et al. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunology. 2020;9(3):e1122. doi: 10.1002/cti2.1122
- Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117(4):1162–1172. doi: 10.1378/chest.117.4.1162
- Leite NC, Pelayo GC, Melton DA. Genetic manipulation of stress pathways can protect stem-cell-derived islets from apoptosis in vitro. Stem Cell Reports. 2022;17(4):766–774. doi: 10.1016/j.stemcr.2022.01.018
- International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels: IDF; 2019.
- Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in Russian Federation: prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, status 2017. Diabetes mellitus. 2018;21(3):144–159. (In Russ.). doi: 10.14341/DM9686
- Eizirik DL, Sammeth M, Bouckenooghe T, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 2012;8(3):e1002552. doi: 10.1371/journal.pgen.1002552
- Insel R, Dunne JL. JDRF’s vision and strategy for prevention of type 1 diabetes. Pediatr Diabetes. 2016;17 Suppl 22:87–92. doi: 10.1111/pedi.12326
- Todd JA, Evangelou M, Cutler AJ, et al. Regulatory T cell responses in participants with type 1 diabetes after a single dose of interleukin-2: A non-randomised, open label, adaptive dose-finding trial. PLoS Med. 2016;13(10):e1002139. doi: 10.1371/journal.pmed.1002139
- Primavera M, Giannini C, Chiarelli F. Prediction and prevention of type 1 diabetes. Front Endocrinol (Lausanne). 2020;11:248. doi: 10.3389/fendo.2020.00248
- Melton D. The promise of stem cell-derived islet replacement therapy. Diabetologia. 2021;64(5):1030–1036. doi: 10.1007/s00125-020-05367-2
- Siehler J, Blochinger AK, Meier M, Lickert H. Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov. 2021;20(12):920–940. doi: 10.1038/s41573-021-00262-w
- Shen S, Sckisel G, Sahoo A, et al. Engineered IL-21 cytokine muteins fused to Anti-PD-1 antibodies can improve CD8+ T cell function and anti-tumor immunity. Front Immunol. 2020;11:832. doi: 10.3389/fimmu.2020.00832
- Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007;39(9):1074–1082. doi: 10.1038/ng2102
- Lenardo MJ. Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature. 1991;353(6347):858–861. doi: 10.1038/353858a0
- Johnston RJ, Choi YS, Diamond JA, et al. STAT5 is a potent negative regulator of TFH cell differentiation. J Exp Med. 2012;209:243–250. doi: 10.1084/jem.20111174
- Serr I, Daniel C. Regulation of T follicular helper cells in islet autoimmunity. Front Immunol. 2018;9:1729. doi: 10.3389/fimmu.2018.01729
- Shao F, Zheng P, Yu D, et al. Follicular helper T cells in type 1 diabetes. FASEB J. 2020;34(1):30–40. doi: 10.1096/fj.201901637R
- Yang XP, Ghoreschi K, Steward-Tharp SM, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12(3):247–254. doi: 10.1038/ni.1995
- Rosenzwajg M, Churlaud G, Mallone R, et al. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun. 2015;58:48–58. doi: 10.1016/j.jaut.2015.01.001
- Hartemann A, Bensimon G, Payan CA, et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1(4):295–305. doi: 10.1016/S2213-8587(13)70113-X
- Grinberg-Bleyer Y, Baeyens A, You S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207(9):1871–1878. doi: 10.1084/jem.20100209
- Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281(1):154–168. doi: 10.1111/imr.12619
- Dalmas E, Lehmann FM, Dror E, et al. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity. 2017;47(5):928–942.e7. doi: 10.1016/j.immuni.2017.10.015
- Miller AM, Asquith DL, Hueber AJ, et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res. 2010;107(5):650–658. doi: 10.1161/CIRCRESAHA.110.218867
- Schiering C, Krausgruber T, Chomka A, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513(7519):564–568. doi: 10.1038/nature13577
- Vasanthakumar A, Moro K, Xin A, et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol. 2015;16(3):276–285. doi: 10.1038/ni.3085
- Peine M, Marek RM, Löhning M. IL-33 in T cell differentiation, function, and immune homeostasis. Trends Immunol. 2016;37(5):321–333. doi: 10.1016/j.it.2016.03.007
- Lu J, Liang Y, Zhao J, et al. Interleukin-33 prevents the development of autoimmune diabetes in NOD mice. Int Immunopharmacol. 2019;70:9–15. doi: 10.1016/j.intimp.2019.02.018
- Ryba-Stanislawowska M, Werner P, Skrzypkowska M, et al. IL-33 Effect on quantitative changes of CD4+CD25highFOXP3+ Regulatory T cells in children with type 1 diabetes. Mediators Inflamm. 2016;2016:9429760. doi: 10.1155/2016/9429760
- Wei H, Li B, Sun A, Guo F. Interleukin-10 family cytokines immunobiology and structure. Adv Exp Med Biol. 2019;1172:79–96. doi: 10.1007/978-981-13-9367-9_4
- Ouyang W, Rutz S, Crellin NK, et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109. doi: 10.1146/annurev-immunol-031210-101312
- Robert S, Gysemans C, Takiishi T, et al. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes. 2014;63(8):2876–2887. doi: 10.2337/db13-1236
- Kleffel S, Vergani A, Tezza S, et al. Interleukin-10+ regulatory B cells arise within antigen-experienced CD40+ B cells to maintain tolerance to islet autoantigens. Diabetes. 2015;64(1):158–171. doi: 10.2337/db13-1639
- Xu A, Zhu W, Li T, et al. Interleukin-10 gene transfer into insulin-producing β cells protects against diabetes in non-obese diabetic mice. Mol Med Rep. 2015;12(3):3881–3889. doi: 10.3892/mmr.2015.3809
- Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. 2003;73(2):213–224. doi: 10.1189/jlb.0602313
- Wawrocki S, Druszczynska M, Kowalewicz-Kulbat M, Rudnicka W. Interleukin 18 (IL-18) as a target for immune intervention. Acta Biochim Pol. 2016;63(1):59–63. doi: 10.18388/abp.2015_1153
- Esmailbeig M, Ghaderi A. Interleukin-18: a regulator of cancer and autoimmune diseases. Eur Cytokine Netw. 2017;28(4):127–140. doi: 10.1684/ecn.2018.0401
- Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223:20–38. doi: 10.1111/j.1600-065X.2008.00624.x
- Prencipe G, Bracaglia C, De Benedetti F. Interleukin-18 in pediatric rheumatic diseases. Curr Opin Rheumatol. 2019;31(5):421–427. doi: 10.1097/BOR.0000000000000634
- Schluns KS, Williams K, Ma A, et al. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol. 2002;168(10):4827–4831. doi: 10.4049/jimmunol.168.10.4827
- Dubois S, Mariner J, Waldmann TA, Tagaya Y. IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity. 2002;17(5):537–547. doi: 10.1016/s1074-7613(02)00429-6
- Verbist KC, Rose DL, Cole CJ, et al. IL-15 participates in the respiratory innate immune response to influenza virus infection. PLoS One. 2012;7(5):e37539. doi: 10.1371/journal.pone.0037539
- Ylipaasto P, Kutlu B, Rasilainen S, et al. Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia. 2005;48(8):1510–1522. doi: 10.1007/s00125-005-1839-7
- Chen J, Feigenbaum L, Awasthi P, et al. Insulin-dependent diabetes induced by pancreatic beta cell expression of IL-15 and IL-15Rα. Proc Natl Acad Sci USA. 2013;110(33):13534–13539. doi: 10.1073/pnas.1312911110
- Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol. 2007;19(6):652–657. doi: 10.1016/j.coi.2007.07.020
- Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. 2002;71(1):1–8.
- Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448(7152):484–487. doi: 10.1038/nature05970
- Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8(9):967–974. doi: 10.1038/ni1488
- Jain R, Tartar DM, Gregg RK, et al. Innocuous IFNgamma induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J Exp Med. 2008;205(1):207–218. doi: 10.1084/jem.20071878
- Emamaullee JA, Davis J, Merani S, et al. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes. 2009;58(6):1302–1311. doi: 10.2337/db08-1113
- Arif S, Moore F, Marks K, et al. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated beta-cell death. Diabetes. 2011;60(8):2112–2119. doi: 10.2337/db10-1643
- Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014;70(1):11–20. doi: 10.1016/j.cyto.2014.05.024
- Siewko K, Maciulewski R, Zielinska-Maciulewska A, et al. Interleukin-6 and interleukin-15 as possible biomarkers of the risk of autoimmune diabetes development. Biomed Res Int. 2019;2019:4734063. doi: 10.1155/2019/4734063
- Kieffer TJ, Heller RS, Leech CA, et al. Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes. 1997;46(6):1087–1093. doi: 10.2337/diab.46.6.1087
- Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNFalpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–668. doi: 10.1126/science.271.5249.665
- Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295. doi: 10.1101/cshperspect.a016295
- Sandler S, Bendtzen K, Eizirik DL, Welsh M. Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro. Endocrinology. 1990;126(2):1288–1294. doi: 10.1210/endo-126-2-1288
- Wedrychowicz A, Dziatkowiak H, Sztefko K, Wedrychowicz A. Interleukin-6 (IL-6) and IGF-IGFBP system in children and adolescents with type 1 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2004;112(8):435–439. doi: 10.1055/s-2004-821189
- Chen Y-L, Qiao Y-C, Pan Y-H, et al. Correlation between serum interleukin-6 level and type 1 diabetes mellitus: A systematic review and meta-analysis. Cytokine. 2017;94:14–20. doi: 10.1016/j.cyto.2017.01.002
- Long D, Chen Y, Wu H, et al. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun. 2019;99:1–14. doi: 10.1016/j.jaut.2019.01.013
- McGuire HM, Vogelzang A, Ma CS, et al. A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells target accessory organs of the digestive system in autoimmunity. Immunity. 2011;34(4):602–615. doi: 10.1016/j.immuni.2011.01.021
- Ferreira RC, Simons HZ, Thompson WS, et al. IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients. Diabetologia. 2015;58(4):781–790. doi: 10.1007/s00125-015-3509-8
- Fonseca VR, Agua-Doce A, Maceiras AR, et al. Human blood Tfr cells are indicators of ongoing humoral activity not fully licensed with suppressive function. Sci Immunol. 2017;2(14):eaan1487. doi: 10.1126/sciimmunol.aan1487
- Viisanen T, Ihantola EL, Nanto-Salonen K, et al. Circulating CXCR5+ PD-1+ ICOS+ follicular T-helper cells are increased close to the diagnosis of type 1 diabetes in children with multiple autoantibodies. Diabetes. 2017;66(2):437–447. doi: 10.2337/db16-0714
- Xu X, Shen M, Zhao R, et al. Follicular regulatory T Cells are associated with βCell autoimmunity and the development of type 1 diabetes. J Clin Endocrinol Metab. 2019;jc.2019–00093. doi: 10.1210/jc.2019-00093
Supplementary files
