Эмаль и дентин зубов человека. Усталостная прочность

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В статье представлен краткий обзор исследований, касающихся изменений структуры и состава зубов после прорезывания. Проанализированы факторы дегенеративных изменений в структурах зуба и их взаимосвязь с возникновением некариозных поражений. В исследованиях сделан акцент на долговечность зуба и изучены факторы, влияющие на усталость тканей, что, в свою очередь, объясняет усиление износа тканей под влиянием местных факторов. В понимании механизмов метаболизма твердых тканей зубов кроется ответ на вопросы стабильности результатов реставрационного лечения и возникновения некариозных поражений зубов. Обращает на себя внимание эволюция взглядов на эту проблему. При анализе литературы очевидно первоначальное преобладание концепций механических воздействий, абразии и минерализации, позднее дополненных детальным анализом влияния разрушающих напряжений и деформации под действием механических факторов. Все передовые работы 2000-х годов посвящены анализу ультраструктурных особенностей эмали, влияющих на ее механические характеристики, и способны объяснить как особенности формы и интенсивности механического износа зуба при функционировании зубно-челюстного аппарата, так и долговечность выполненных реставраций. Обзор литературы проведен по 74 источникам за последние 15 лет.

Полный текст

Доступ закрыт

Об авторах

Алексей Викторович Силин

Северо-Западный государственный медицинский университет им. И.И. Мечникова

Email: silin@me.com
ORCID iD: 0000-0002-3533-5615
SPIN-код: 4956-6941

доктор мед. наук, профессор

Россия, 191015, Санкт-Петербург, Кирочная ул., д. 41

Елена Александровна Сатыго

Северо-Западный государственный медицинский университет им. И.И. Мечникова

Автор, ответственный за переписку.
Email: stom9@yandex.ru
ORCID iD: 0000-0001-9801-503X
SPIN-код: 8776-0513

доктор мед. наук, профессор

Россия, 191015, Санкт-Петербург, Кирочная ул., д. 41

Александр Тимурович Марьянович

Северо-Западный государственный медицинский университет им. И.И. Мечникова

Email: atm52@mail.ru
ORCID iD: 0000-0001-7482-3403
SPIN-код: 5957-2347

доктор биол. наук, профессор

Россия, 191015, Санкт-Петербург, Кирочная ул., д. 41

Список литературы

  1. Kinney J.H., Marshall S.J., Marshall G.W. The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature // Crit. Rev. Oral. Biol. Med. 2003. Vol. 14, No. 1. P. 13–29. doi: 10.1177/154411130301400103
  2. Pashley D.H. Dentin: a dynamic substrate-a review // Scanning Microsc. 1989. Vol. 3, No. 1. P. 161–174; discussion 174–176.
  3. Marshall G.W.Jr., Marshall S.J., Kinney J.H., Balooch M. The dentin substrate: structure and properties related to bonding // J. Dent. 1997. Vol. 25, No. 6. P. 441–458. doi: 10.1016/s0300-5712(96)00065-6
  4. Shahmoradi M., Bertassoni L.E., Elfallah H.M., Swain M. Fundamental structure and properties of enamel, dentin and cementum // Advances in Calcium Phosphate Biomaterials. 2014. Chapter 17. P. 511–547. doi: 10.1007/978-3-642-53980-0_17
  5. Nanci A. Ten Cate’s Oral Histology: Development, Structure, and function.7th ed. Mosby-Year Book Inc, 2008.
  6. Garberoglio R., Brännström M. Scanning electron microscopic investigation of human dentinal tubules // Arch. Oral Biol. 1976. Vol. 21, No. 6. P. 355–362. doi: 10.1016/s0003-9969(76)80003-9
  7. Schilke R., Lisson J.A., Bauss O., Geurtsen W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation // Arch. Oral Biol. 2000. Vol. 45, No. 5. P. 355–361. doi: 10.1016/s0003-9969(00)00006-6
  8. Coutinho E.T., Moraes d’Almeida J.R., Paciornik S. Evaluation of microstructural parameters of human dentin by digital image analysis // Mater Res. 2007. Vol. 10, No. 2. P. 153–159. doi: 10.1590/S1516-14392007000200010
  9. Carvalho R.M., Fernandes C.A., Villanueva R. et al. Tensile strength of human dentin as a function of tubule orientation and density // J. Adhes. Dent. 2001. Vol. 3, No. 4. P. 309–314.
  10. Giannini M., Carvalho R.M., Martins L.R. et al. The influence of tubule density and area of solid dentin on bond strength of two adhesive systems to dentin // J. Adhes. Dent. 2001. Vol. 3, No. 4. P. 315–324.
  11. Mannocci F., Pilecki P., Bertelli E., Watson T.F. Density of dentinal tubules affects the tensile strength of root dentin // Dent. Mater. 2004. Vol. 20, No. 3. P. 293–296. doi: 10.1016/S0109-5641(03)00106-4
  12. Arola D., Ivancik J., Majd H. et al. Microstructure and mechanical behavior of radicular and coronal dentin // Endodontic Topics. 2012. Vol. 20. P. 30–51.
  13. Montoya C., Arango-Santander S., Peláez-Vargas A. et al. Effect of aging on the microstructure, hardness and chemical composition of dentin // Arch. Oral Biol. 2015. Vol. 60, No. 12. P. 1811–1820. doi: 10.1016/j.archoralbio.2015.10.002
  14. Ivancik J., Naranjo M., Correa S. et al. Differences in the microstructure and fatigue properties of dentine between residents of North and South America // Arch. Oral Biol. 2014. Vol. 59, No. 10. P. 1001–1012. doi: 10.1016/j.archoralbio.2014.05.028
  15. Widbiller M., Schweikl H., Bruckmann A. et al. Shotgun proteomics of human dentin with different prefractionation methods // Sci. Rep. 2019. Vol. 9, No. 1. P. 4457. doi: 10.1038/s41598-019-41144-x
  16. Robinson C., Kirkham J., Shore R. Dental enamel: formation to destruction. Boca Raton, FL: CRC Press, 1995. P. 151–152.
  17. He L.H., Swain M.V. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics // J. Mech. Behav. Biomed. Mater. 2008. Vol. 1, No. 1. P. 18–29. doi: 10.1016/j.jmbbm.2007.05.001
  18. An B., Wang R., Zhang D. Role of crystal arrangement on the mechanical performance of enamel // Acta Biomater. 2012. Vol. 8, No. 10. P. 3784–3793. doi: 10.1016/j.actbio.2012.06.026
  19. Macho G.A., Jiang Y., Spears I.R. Enamel microstructure – a truly three-dimensional structure // J. Hum. Evol. 2003. Vol. 45, No. 1. P. 81–90. doi: 10.1016/s0047-2484(03)00083-6
  20. Lynch C.D., O’Sullivan V.R., Dockery P. et al. Hunter-Schreger Band patterns in human tooth enamel // J. Anat. 2010. Vol. 217, No. 2. P. 106–115. doi: 10.1111/j.1469-7580.2010.01255.x
  21. Bajaj D., Nazari A., Eidelman N., Arola D.D. A comparison of fatigue crack growth in human enamel and hydroxyapatite // Biomaterials. 2008. Vol. 29, No. 36. P. 4847–4854. doi: 10.1016/j.biomaterials.2008.08.019
  22. Bajaj D., Arola D. Role of prism decussation on fatigue crack growth and fracture of human enamel // Acta Biomater. 2009. Vol. 5, No. 8. P. 3045–3056. doi: 10.1016/j.actbio.2009.04.013
  23. Bechtle S., Habelitz S., Klocke A. et al. The fracture behaviour of dental enamel // Biomaterials. 2010. Vol. 31, No. 2. P. 375–384. doi: 10.1016/j.biomaterials.2009.09.050
  24. Yahyazadehfar M., Bajaj D., Arola D.D. Hidden contributions of the enamel rods on the fracture resistance of human teeth // Acta Biomater. 2013. Vol. 9, No. 1. P. 4806–4814. doi: 10.1016/j.actbio.2012.09.020
  25. Bertassoni L.E., Orgel J.P., Antipova O., Swain M.V. The dentin organic matrix–limitations of restorative dentistry hidden on the nanometer scale // Acta Biomater. 2012. Vol. 8, No. 7. P. 2419–2433. doi: 10.1016/j.actbio.2012.02.022
  26. Bertassoni L.E., Swain M.V. The contribution of proteoglycans to the mechanical behavior of mineralized tissues // J. Mech. Behav. Biomed. Mater. 2014. Vol. 38. P. 91–104. doi: 10.1016/j.jmbbm.2014.06.008
  27. Bertassoni L.E., Kury M., Rathsam C. et al. The role of proteoglycans in the nanoindentation creep behavior of human dentin // J. Mech. Behav. Biomed. Mater. 2015. Vol. 55. P. 264–270. doi: 10.1016/j.jmbbm.2015.10.018
  28. Goldberg M., Takagi M. Dentine proteoglycans: composition, ultrastructure and functions // Histochem. J. 1993. Vol. 25, No. 11. P. 781–806.
  29. Ji B., Gao H. Mechanical properties of nanostructure of biological materials // J. Mech. Phys. Solids. 2004. Vol. 52, No. 9. P. 1963–1990. doi: 10.1016/j.jmps.2004.03.006
  30. Elfallah H.M., Bertassoni L.E., Charadram N. et al. Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel // Acta Biomater. 2015. Vol. 20. P. 120–128. doi: 10.1016/j.actbio.2015.03.035
  31. Elfallah H.M., Swain M.V. A review of the effect of vital teeth bleaching on the mechanical properties of tooth enamel // N. Z. Dent. J. 2013. Vol. 109, No. 3. P. 87–96.
  32. Yahyazadehfar M., Arola D. The role of organic proteins on the crack growth resistance of human enamel // Acta Biomater. 2015. Vol. 19. P. 33–45. doi: 10.1016/j.actbio.2015.03.011
  33. Arola D., Huang M.P., Sultan M.B. The failure of amalgam dental restorations due to cyclic fatigue crack growth // J. Mater. Sci. Mater. Med. 1999. Vol. 10, No. 6. P. 319–327. doi: 10.1023/a:1026435821960
  34. Lubisich E.B., Hilton T.J., Ferracane J. Cracked teeth: a review of the literature // J. Esthet. Restor. Dent. 2010. Vol. 22, No. 3. P. 158–167. doi: 10.1111/j.1708-8240.2010.00330.x
  35. Shemesh H., Bier C.A., Wu M.K. et al. The effects of canal preparation and filling on the incidence of dentinal defects // Int. Endod. J. 2009. Vol. 42, No. 3. P. 208–213. doi: 10.1111/j.1365-2591.2008.01502.x
  36. Adorno C.G., Yoshioka T., Jindan P. et al. The effect of endodontic procedures on apical crack initiation and propagation ex vivo // Int. Endod. J. 2013. Vol. 46. P. 763–768. doi: 10.1111/iej.12056
  37. Bürklein S., Tsotsis P., Schäfer E. Incidence of dentinal defects after root canal preparation: reciprocating versus rotary instrumentation // J. Endod. 2013. Vol. 39, No. 4. P. 501–504. doi: 10.1016/j.joen.2012.11.045
  38. Arias A., Lee Y.H., Peters C.I. et al. Comparison of 2 canal preparation techniques in the induction of microcracks: A pilot study with cadaver mandibles // J. Endod. 2014. Vol. 40, No. 7. P. 982–985. doi: 10.1016/j.joen.2013.12.003
  39. De-Deus G., Silva E.J., Marins J. et al. Lack of causal relationship between dentinal microcracks and root canal preparation with reciprocation systems // J. Endod. 2014. Vol. 40, No. 9. P. 1447–1450. doi: 10.1016/j.joen.2014.02.019
  40. De-Deus G., Belladonna F.G., Souza E.M. et al. Micro-computed tomographic assessment on the effect of proTaper next and twisted file adaptive systems on dentinal cracks // J. Endod. 2015. Vol. 41, No. 7. P. 1116–1119. doi: 10.1016/j.joen.2015.02.012
  41. Sehy C., Drummond J.L. Micro-cracking of tooth structure // Am. J. Dent. 2004. Vol. 17, No. 5. P. 378–380.
  42. Majd H., Viray J., Porter J.A. et al. Degradation in the fatigue resistance of dentin by bur and abrasive air-jet preparations // J. Dent. Res. 2012. Vol. 91, No. 9. P. 894–899. doi: 10.1177/0022034512455800
  43. Majd B., Majd H., Porter J.A. et al. Degradation in the fatigue strength of dentin by diamond bur preparations: Importance of cutting direction // J. Biomed. Mater. Res. B Appl. Biomater. 2016. Vol. 104, No. 1. P. 39–49. doi: 10.1002/jbm.b.33348
  44. Arola D. Fatigue testing of biomaterials and their interfaces // Dent. Mater. 2017. Vol. 33, No. 4. P. 367–381. doi: 10.1016/j.dental.2017.01.012
  45. Ivancik J., Majd H., Bajaj D. et al. Contributions of aging to the fatigue crack growth resistance of human dentin // Acta Biomater. 2012. Vol. 8, No. 7. P. 2737–2746. doi: 10.1016/j.actbio.2012.03.046
  46. Lee H.H., Majd H., Orrego S. et al. Degradation in the fatigue strength of dentin by cutting, etching and adhesive bonding // Dent. Mater. 2014. Vol. 30, No. 9. P. 1061–1072. doi: 10.1016/j.dental.2014.06.005
  47. Ivancik J., Arola D.D. The importance of microstructural variations on the fracture toughness of human dentin // Biomaterials. 2013. Vol. 34, No. 4. P. 864–874. doi: 10.1016/j.biomaterials.2012.10.032
  48. Montoya C., Arola D., Ossa E.A. Importance of tubule density to the fracture toughness of dentin // Arch. Oral Biol. 2016. Vol. 67. P. 9–14. doi: 10.1016/j.archoralbio.2016.03.003
  49. Arola D. Fracture and aging in dentin // Dental Biomaterials: Imaging, Testing and Modeling. Ed. by R. Curtis, T. Watson. Woodhead Publishing; Cambridge, UK, 2007.
  50. Kruzic J.J., Ritchie R.O. Fatigue of mineralized tissues: cortical bone and dentin // J. Mech. Behav. Biomed. Mater. 2008. Vol. 1. P. 3–17. doi: 10.1016/j.jmbbm.2007.04.002
  51. Gao S.S., An B.B., Yahyazadehfar M. et al. Contact fatigue of human enamel: Experiments, mechanisms and modeling // J. Mech. Behav. Biomed. Mater. 2016. Vol. 60. P. 438–450. doi: 10.1016/j.jmbbm.2016.02.030
  52. Yahyazadehfar M., Mutluay M.M., Majd H. et al. Fatigue of the resin-enamel bonded interface and the mechanisms of failure // J. Mech. Behav. Biomed. Mater. 2013. Vol. 21. P. 121–132. doi: 10.1016/j.jmbbm.2013.02.017
  53. Arola D., Reprogel R.K. Effects of aging on the mechanical behavior of human dentin // Biomaterials. 2005. Vol. 26, No. 18. P. 4051–4061. doi: 10.1016/j.biomaterials.2004.10.029
  54. Chai H. On the mechanical properties of tooth enamel under spherical indentation // Acta Biomater. 2014. Vol. 10, No. 11. P. 4852–4860. doi: 10.1016/j.actbio.2014.07.003
  55. Yilmaz E.D., Schneider G.A., Swain M.V. Influence of structural hierarchy on the fracture behaviour of tooth enamel // Philos. Trans. A Math. Phys. Eng. Sci. 2015. Vol. 373, No. 2038. P. 20140130. doi: 10.1098/rsta.2014.0130
  56. Yahyazadehfar M., Ivancik J., Majd H. et al. On the mechanics of fatigue and fracture in teeth // Appl. Mech. Rev. 2014. Vol. 66, No. 3. P. 0308031–3080319. doi: 10.1115/1.4027431
  57. Rivera C., Arola D., Ossa A. Indentation damage and crack repair in human enamel // J. Mech. Behav. Biomed. Mater. 2013. Vol. 21. P. 178–184. doi: 10.1016/j.jmbbm.2013.02.020
  58. Chai H., Lee J.J., Constantino P.J. et al. Remarkable resilience of teeth // Proc. Natl. Acad. Sci. 2009. Vol. 106, No. 18. P. 7289–7293. doi: 10.1073/pnas.0902466106
  59. Myoung S., Lee J., Constantino P. et al. Morphology and fracture of enamel // J. Biomech. 2009. Vol. 42, No. 12. P. 1947–1951. doi: 10.1016/j.jbiomech.2009.05.013
  60. Imbeni V., Kruzic J.J., Marshall G.W. et al. The dentin-enamel junction and the fracture of human teeth // Nat. Mater. 2005. Vol. 4, No. 3. P. 229–232. doi: 10.1038/nmat1323
  61. Porter A.E., Nalla R.K., Minor A. et al. A transmission electron microscopy study of mineralization in age-induced transparent dentin // Biomaterials. 2005. Vol. 26, No. 36. P. 7650–7660. doi: 10.1016/j.biomaterials.2005.05.059
  62. Kinney J.H., Nalla R.K., Pople J.A. et al. Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties // Biomaterials. 2005. Vol. 26, No. 16. P. 3363–3376. doi: 10.1016/j.biomaterials.2004.09.004
  63. Bajaj D., Sundaram N., Nazari A. et al. Age, dehydration and fatigue crack growth in dentin // Biomaterials. 2006. Vol. 27, No. 11. P. 2507–2517. doi: 10.1016/j.biomaterials.2005.11.035
  64. Nazari A., Bajaj D., Zhang D. et al. Aging and the reduction in fracture toughness of human dentin // J. Mech. Behav. Biomed. Mater. 2009. Vol. 2, No. 5. P. 550–559. doi: 10.1016/j.jmbbm.2009.01.008
  65. Shinno Y., Ishimoto T., Saito M. et al. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin // Sci. Rep. 2016. Vol. 6. P. 19849. doi: 10.1038/srep19849
  66. Bailey A.J. Molecular mechanisms of ageing in connective tissues // Mech. Ageing Dev. 2001. Vol. 122. P. 735–755. doi: 10.1016/s0047-6374(01)00225-1
  67. Park S., Wang D.H., Dongsheng Z. et al. Mechanical properties of human enamel as a function of age and location in the tooth // J. Mater. Sci. Mater. Med. 2008. Vol. 19, No. 6. P. 2317–2324. doi: 10.1007/s10856-007-3340-y
  68. Zheng Q., Xu H., Song F. et al. Spatial distribution of the human enamel fracture toughness with aging // J. Mech. Behav. Biomed. Mater. 2013. Vol. 26. P. 148–154. doi: 10.1016/j.jmbbm.2013.04.025
  69. Park S., Quinn J.B., Romberg E., Arola D. On the brittleness of enamel and selected dental materials // Dent. Mater. 2008. Vol. 24, No. 11. P. 1477–1485. doi: 10.1016/j.dental.2008.03.007
  70. Bertacci A., Chersoni S., Davidson C.L., Prati C. In vivo enamel fluid movement // Eur. J. Oral Sci. 2007. Vol. 115, No. 3. P. 169–173. doi: 10.1111/j.1600-0722.2007.00445.x
  71. He B., Huang S., Zhang C. et al. Mineral densities and elemental content in different layers of healthy human enamel with varying teeth age // Arch. Oral Biol. 2011. Vol. 56, No. 10. P. 997–1004. doi: 10.1016/j.archoralbio.2011.02.015
  72. Efeoglu N., Wood D., Efeoglu C. Microcomputerised tomography evaluation of 10% carbamide peroxide applied to enamel // J. Dent. 2005. Vol. 33, No. 7. P. 561–567. doi: 10.1016/j.jdent.2004.12.001
  73. Wang X., Mihailova B., Klocke A. et al. Side effects of a non-peroxide-based home bleaching agent on dental enamel // J. Biomed. Mater. Res. A. 2009. Vol. 88, No. 1. P. 195–204. doi: 10.1002/jbm.a.31843
  74. Kelly A.M., Kallistova A., Küchler E.C. et al. Measuring the microscopic structures of human dental enamel can predict caries experience // J. Pers. Med. 2020. Vol. 10, No. 1. P. 5. doi: 10.3390/jpm10010005

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах