Enamel and dentin of human teeth. Fatigue strength

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article provides a brief overview of the studies regarding changes in the structure and composition of teeth after eruption. The factors of degenerative changes in tooth structures and their relationship with non-carious lesions have been analyzed. The study makes emphasis on the tooth durability and the factors influencing tissue fatigue, explaining increased tissue wear due to local factors. Understanding mechanisms of metabolism of teeth hard tissues is the key to the stability of restorative treatments and occurrence of non-carious tooth lesions. The evolution of views on this problem is noteworthy. The literature review reveals the initial predominance of mechanical actions, abrasion, and mineralization. It is later complemented by a detailed analysis of the influence of destructive stresses and deformation due to mechanical factors. All the leading works of the 2000s are dedicated to analyzing the ultrastructural features of enamel that affect its mechanical characteristics and can explain both the characteristics of the shape and intensity of mechanical tooth wear during the functioning of the stomatognathic system, as well as the durability of the performed restorations. The literature review covers 74 sources over the past 15 years.

Full Text

Restricted Access

About the authors

Alexey V. Silin

North-Western State Medical University named after I.I. Mechnikov

Email: silin@me.com
ORCID iD: 0000-0002-3533-5615
SPIN-code: 4956-6941

MD, Dr. Sci. (Med.), Professor

Russian Federation, 41 Kirochnaya St., Saint Petersburg, 191015

Elena A. Satygo

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: stom9@yandex.ru
ORCID iD: 0000-0001-9801-503X
SPIN-code: 8776-0513

MD, Dr. Sci. (Med.), Professor

Russian Federation, 41 Kirochnaya St., Saint Petersburg, 191015

Alexander T. Maryanovich

North-Western State Medical University named after I.I. Mechnikov

Email: atm52@mail.ru
ORCID iD: 0000-0001-7482-3403
SPIN-code: 5957-2347

Dr. Sci. (Biol.), Professor

Russian Federation, 41 Kirochnaya St., Saint Petersburg, 191015

References

  1. Kinney JH, Marshall SJ, Marshall GW. The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med. 2003;14(1):13–29. doi: 10.1177/154411130301400103
  2. Pashley DH. Dentin: a dynamic substrate-a review. Scanning Microsc. 1989;3(1):161–174; discussion 174–176.
  3. Marshall GW, Jr, Marshall SJ, Kinney JH, Balooch M. The dentin substrate: structure and properties related to bonding. J Dent. 1997;25(6):441–458. doi: 10.1016/s0300-5712(96)00065-6
  4. Shahmoradi M, Bertassoni LE, Elfallah HM, Swain M. Fundamental structure and properties of enamel, dentin and cementum. In: Advances in Calcium Phosphate Biomaterials. 2014. Chapter 17. P. 511–547. doi: 10.1007/978-3-642-53980-0_17
  5. Nanci A. Ten Cate’s Oral Histology: Development, Structure, and function. 7th ed. Mosby-Year Book Inc; 2008.
  6. Garberoglio R, Brännström M. Scanning electron microscopic investigation of human dentinal tubules. Arch Oral Biol. 1976;21(6):355–362. doi: 10.1016/s0003-9969(76)80003-9
  7. Schilke R, Lisson JA, Bauss O, Geurtsen W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Biol. 2000;45(5):355–361. doi: 10.1016/s0003-9969(00)00006-6
  8. Coutinho ET, Moraes d’Almeida JR, Paciornik S. Evaluation of microstructural parameters of human dentin by digital image analysis. Mater Res. 2007;10(2):153–159. doi: 10.1590/S1516-14392007000200010
  9. Carvalho RM, Fernandes CA, Villanueva R, et al. Tensile strength of human dentin as a function of tubule orientation and density. J Adhes Dent. 2001;3(4):309–314.
  10. Giannini M, Carvalho RM, Martins LR, et al. The influence of tubule density and area of solid dentin on bond strength of two adhesive systems to dentin. J Adhes Dent. 2001;3(4):315–324.
  11. Mannocci F, Pilecki P, Bertelli E, Watson TF. Density of dentinal tubules affects the tensile strength of root dentin. Dent Mater. 2004;20(3):293–296. doi: 10.1016/S0109-5641(03)00106-4
  12. Arola D, Ivancik J, Majd H, et al. Microstructure and mechanical behavior of radicular and coronal dentin. Endodontic Topics. 2012;20:30–51.
  13. Montoya C, Arango-Santander S, Peláez-Vargas A, et al. Effect of aging on the microstructure, hardness and chemical composition of dentin. Arch Oral Biol. 2015;60(12):1811–1820. doi: 10.1016/j.archoralbio.2015.10.002
  14. Ivancik J, Naranjo M, Correa S, et al. Differences in the microstructure and fatigue properties of dentine between residents of North and South America. Arch Oral Biol. 2014;59(10):1001–1012. doi: 10.1016/j.archoralbio.2014.05.028
  15. Widbiller M, Schweikl H, Bruckmann A, et al. Shotgun proteomics of human dentin with different prefractionation methods. Sci Rep. 2019;9(1):4457. doi: 10.1038/s41598-019-41144-x
  16. Robinson C, Kirkham J, Shore R. Dental enamel: formation to destruction. Boca Raton, FL: CRC Press; 1995. P. 151–152.
  17. He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater. 2008;1(1):18–29. doi: 10.1016/j.jmbbm.2007.05.001
  18. An B, Wang R, Zhang D. Role of crystal arrangement on the mechanical performance of enamel. Acta Biomater. 2012;8(10):3784–3793. doi: 10.1016/j.actbio.2012.06.026
  19. Macho GA, Jiang Y, Spears IR. Enamel microstructure – a truly three-dimensional structure. J Hum Evol. 2003;45(1):81–90. doi: 10.1016/s0047-2484(03)00083-6
  20. Lynch CD, O’Sullivan VR, Dockery P, et al. Hunter-Schreger Band patterns in human tooth enamel. J Anat. 2010;217(2):106–115. doi: 10.1111/j.1469-7580.2010.01255.x
  21. Bajaj D, Nazari A, Eidelman N, Arola DD. A comparison of fatigue crack growth in human enamel and hydroxyapatite. Biomaterials. 2008;29(36):4847–4854. doi: 10.1016/j.biomaterials.2008.08.019
  22. Bajaj D, Arola D. Role of prism decussation on fatigue crack growth and fracture of human enamel. Acta Biomater. 2009;5(8):3045–3056. doi: 10.1016/j.actbio.2009.04.013
  23. Bechtle S, Habelitz S, Klocke A, et al. The fracture behaviour of dental enamel. Biomaterials. 2010;31(2):375–384. doi: 10.1016/j.biomaterials.2009.09.050
  24. Yahyazadehfar M, Bajaj D, Arola DD. Hidden contributions of the enamel rods on the fracture resistance of human teeth. Acta Biomater. 2013;9(1):4806–4814. doi: 10.1016/j.actbio.2012.09.020
  25. Bertassoni LE, Orgel JP, Antipova O, Swain MV. The dentin organic matrix–limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater. 2012;8(7):2419–2433. doi: 10.1016/j.actbio.2012.02.022
  26. Bertassoni LE, Swain MV. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater. 2014;38:91–104. doi: 10.1016/j.jmbbm.2014.06.008
  27. Bertassoni LE, Kury M, Rathsam C, et al. The role of proteoglycans in the nanoindentation creep behavior of human dentin. J Mech Behav Biomed Mater. 2015;55:264–270. doi: 10.1016/j.jmbbm.2015.10.018
  28. Goldberg M, Takagi M. Dentine proteoglycans: composition, ultrastructure and functions. Histochem J. 1993;25(11):781–806.
  29. Ji B, Gao H. Mechanical properties of nanostructure of biological materials. J Mech Phys Solids. 2004;52(9):1963–1990. doi: 10.1016/j.jmps.2004.03.006
  30. Elfallah HM, Bertassoni LE, Charadram N, et al. Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel. Acta Biomater. 2015;20:120–128. doi: 10.1016/j.actbio.2015.03.035
  31. Elfallah HM, Swain MV. A review of the effect of vital teeth bleaching on the mechanical properties of tooth enamel. N Z Dent J. 2013;109(3):87–96.
  32. Yahyazadehfar M, Arola D. The role of organic proteins on the crack growth resistance of human enamel. Acta Biomater. 2015;19:33–45. doi: 10.1016/j.actbio.2015.03.011
  33. Arola D, Huang MP, Sultan MB. The failure of amalgam dental restorations due to cyclic fatigue crack growth. J Mater Sci Mater Med. 1999;10(6):319–327. doi: 10.1023/a:1026435821960
  34. Lubisich EB, Hilton TJ, Ferracane J. Cracked teeth: a review of the literature. J Esthet Restor Dent. 2010;22(3):158–167. doi: 10.1111/j.1708-8240.2010.00330.x
  35. Shemesh H, Bier CA, Wu MK, et al. The effects of canal preparation and filling on the incidence of dentinal defects. Int Endod J. 2009;42(3):208–213. doi: 10.1111/j.1365-2591.2008.01502.x
  36. Adorno CG, Yoshioka T, Jindan P, et al. The effect of endodontic procedures on apical crack initiation and propagation ex vivo. Int Endod J. 2013;46:763–768. doi: 10.1111/iej.12056
  37. Bürklein S, Tsotsis P, Schäfer E. Incidence of dentinal defects after root canal preparation: reciprocating versus rotary instrumentation. J Endod. 2013;39(4):501–504. doi: 10.1016/j.joen.2012.11.045
  38. Arias A, Lee YH, Peters CI, et al. Comparison of 2 canal preparation techniques in the induction of microcracks: A pilot study with cadaver mandibles. J Endod. 2014;40(7):982–985. doi: 10.1016/j.joen.2013.12.003
  39. De-Deus G, Silva EJ, Marins J, et al. Lack of causal relationship between dentinal microcracks and root canal preparation with reciprocation systems. J Endod. 2014;40(9):1447–1450. doi: 10.1016/j.joen.2014.02.019
  40. De-Deus G, Belladonna FG, Souza EM, et al. Micro-computed tomographic assessment on the effect of proTaper next and twisted file adaptive systems on dentinal cracks. J Endod. 2015;41(7):1116–1119. doi: 10.1016/j.joen.2015.02.012
  41. Sehy C, Drummond JL. Micro-cracking of tooth structure. Am J Dent. 2004;17(5):378–380.
  42. Majd H, Viray J, Porter JA, et al. Degradation in the fatigue resistance of dentin by bur and abrasive air-jet preparations. J Dent Res. 2012;91(9):894–899. doi: 10.1177/0022034512455800
  43. Majd B, Majd H, Porter JA, et al. Degradation in the fatigue strength of dentin by diamond bur preparations: Importance of cutting direction. J Biomed Mater Res B Appl Biomater. 2016;104(1):39–49. doi: 10.1002/jbm.b.33348
  44. Arola D. Fatigue testing of biomaterials and their interfaces. Dent Mater. 2017;33(4):367–381. doi: 10.1016/j.dental.2017.01.012
  45. Ivancik J, Majd H, Bajaj D, et al. Contributions of aging to the fatigue crack growth resistance of human dentin. Acta Biomater. 2012;8(7):2737–2746. doi: 10.1016/j.actbio.2012.03.046
  46. Lee HH, Majd H, Orrego S, et al. Degradation in the fatigue strength of dentin by cutting, etching and adhesive bonding. Dent Mater. 2014;30(9):1061–1072. doi: 10.1016/j.dental.2014.06.005
  47. Ivancik J, Arola DD. The importance of microstructural variations on the fracture toughness of human dentin. Biomaterials. 2013;34(4):864–874. doi: 10.1016/j.biomaterials.2012.10.032
  48. Montoya C, Arola D, Ossa EA. Importance of tubule density to the fracture toughness of dentin. Arch Oral Biol. 2016;67:9–14. doi: 10.1016/j.archoralbio.2016.03.003
  49. Arola D. Fracture and Aging in Dentin. In: Curtis R, Watson T, editors. Dental Biomaterials: Imaging, Testing and Modeling. Woodhead Publishing; Cambridge, UK; 2007.
  50. Kruzic JJ, Ritchie RO. Fatigue of mineralized tissues: cortical bone and dentin. J Mech Behav Biomed Mater. 2008;1:3–17. doi: 10.1016/j.jmbbm.2007.04.002
  51. Gao SS, An BB, Yahyazadehfar M, et al. Contact fatigue of human enamel: Experiments, mechanisms and modeling. J Mech Behav Biomed Mater. 2016;60:438–450. doi: 10.1016/j.jmbbm.2016.02.030
  52. Yahyazadehfar M, Mutluay MM, Majd H, et al. Fatigue of the resin-enamel bonded interface and the mechanisms of failure. J Mech Behav Biomed Mater. 2013;21:121–132. doi: 10.1016/j.jmbbm.2013.02.017
  53. Arola D, Reprogel RK. Effects of aging on the mechanical behavior of human dentin. Biomaterials. 2005;26(18):4051–4061. doi: 10.1016/j.biomaterials.2004.10.029
  54. Chai H. On the mechanical properties of tooth enamel under spherical indentation. Acta Biomater. 2014;10(11):4852–4860. doi: 10.1016/j.actbio.2014.07.003
  55. Yilmaz ED, Schneider GA, Swain MV. Influence of structural hierarchy on the fracture behaviour of tooth enamel. Philos Trans A Math Phys Eng Sci. 2015;373(2038):20140130. doi: 10.1098/rsta.2014.0130
  56. Yahyazadehfar M, Ivancik J, Majd H, et al. On the mechanics of fatigue and fracture in teeth. Appl Mech Rev. 2014;66(3):0308031–3080319. doi: 10.1115/1.4027431
  57. Rivera C, Arola D, Ossa A. Indentation damage and crack repair in human enamel. J Mech Behav Biomed Mater. 2013;21:178–184. doi: 10.1016/j.jmbbm.2013.02.020
  58. Chai H, Lee JJ, Constantino PJ, et al. Remarkable resilience of teeth. Proc Natl Acad Sci. 2009;106(18):7289–7293. doi: 10.1073/pnas.0902466106
  59. Myoung S, Lee J, Constantino P, et al. Morphology and fracture of enamel. J Biomech. 2009;42(12):1947–1951. doi: 10.1016/j.jbiomech.2009.05.013
  60. Imbeni V, Kruzic JJ, Marshall GW, et al. The dentin-enamel junction and the fracture of human teeth. Nat Mater. 2005;4(3):229–232. doi: 10.1038/nmat1323
  61. Porter AE, Nalla RK, Minor A, et al. A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials. 2005;26(36):7650–7660. doi: 10.1016/j.biomaterials.2005.05.059
  62. Kinney JH, Nalla RK, Pople JA, et al. Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials. 2005;26(16):3363–3376. doi: 10.1016/j.biomaterials.2004.09.004
  63. Bajaj D, Sundaram N, Nazari A, et al. Age, dehydration and fatigue crack growth in dentin. Biomaterials. 2006;27(11):2507–2517. doi: 10.1016/j.biomaterials.2005.11.035
  64. Nazari A, Bajaj D, Zhang D, et al. Aging and the reduction in fracture toughness of human dentin. J Mech Behav Biomed Mater. 2009;2(5):550–559. doi: 10.1016/j.jmbbm.2009.01.008
  65. Shinno Y, Ishimoto T, Saito M, et al. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Sci Rep. 2016;6:19849. doi: 10.1038/srep19849
  66. Bailey AJ. Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 2001;122:735–755. doi: 10.1016/s0047-6374(01)00225-1
  67. Park S, Wang DH, Dongsheng Z, et al. Mechanical properties of human enamel as a function of age and location in the tooth. J Mater Sci Mater Med. 2008;19(6):2317–2324. doi: 10.1007/s10856-007-3340-y
  68. Zheng Q, Xu H, Song F, et al. Spatial distribution of the human enamel fracture toughness with aging. J Mech Behav Biomed Mater. 2013;26:148–154. doi: 10.1016/j.jmbbm.2013.04.025
  69. Park S, Quinn JB, Romberg E, Arola D. On the brittleness of enamel and selected dental materials. Dent Mater. 2008;24(11):1477–1485. doi: 10.1016/j.dental.2008.03.007
  70. Bertacci A, Chersoni S, Davidson CL, Prati C. In vivo enamel fluid movement. Eur J Oral Sci. 2007;115(3):169–173. doi: 10.1111/j.1600-0722.2007.00445.x
  71. He B, Huang S, Zhang C, et al. Mineral densities and elemental content in different layers of healthy human enamel with varying teeth age. Arch Oral Biol. 2011;56(10):997–1004. doi: 10.1016/j.archoralbio.2011.02.015
  72. Efeoglu N, Wood D, Efeoglu C. Microcomputerised tomography evaluation of 10% carbamide peroxide applied to enamel. J Dent. 2005;33(7):561–567. doi: 10.1016/j.jdent.2004.12.001
  73. Wang X, Mihailova B, Klocke A, et al. Side effects of a non-peroxide-based home bleaching agent on dental enamel. J Biomed Mater Res A. 2009;88(1):195–204. doi: 10.1002/jbm.a.31843
  74. Kelly AM, Kallistova A, Küchler EC, et al. Measuring the microscopic structures of human dental enamel can predict caries experience. J Pers Med. 2020;10(1):5. doi: 10.3390/jpm10010005

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 71733 от 08.12.2017.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies