Dependences of the Omori and Gutenberg–Richter parameters

Cover Page
  • Authors: Smirnov V.B.1,2,3, Ponomarev A.V.1, Stanchits S.A.4, Potanina M.G.2, Patonin A.V.5, Dresen G.6, Narteau C.3, Bernard P.3, Stroganova S.M.1
  • Affiliations:
    1. Institute of the Earth Physics of the Russian Academy of Sciences
    2. Lomonosov Moscow State University
    3. Institut de Physique du Globe de Paris
    4. Skolkovo Institute of Science and Technology
    5. Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Science
    6. GFZ German Research Centre for Geosciences, Section III.2
  • Issue: No 1 (2019)
  • Pages: 149-165
  • Section: ARTICLES
  • URL:
  • DOI:
  • Cite item


Laboratory experiments on studying the aftershock regime are carried out with sandstone specimens under different axial loading and uniform compression and constant pore pressure. The aftershock sequences are modeled by the scenario of stepwise increasing axial loading of a specimen with strain control ensuring regular generation of aftershock sequences. The experiments are conducted on intact specimens and on the specimens with preliminarily formed shear macrofractures simulating natural faults. The experiments were conducted with multichannel recording of the acoustic emission (AE) signals which made it possible to locate the AE sources. Several types of the dependence of the acoustic activity relaxation parameters (parameters p and c of the modified Omori law and the Gutenberg–Richter b-value) on the level of acting stresses are revealed. The b-value decreases with the growth of axial stresses at all levels of uniform compression. In the case of fracture on the preexisting fault, the Omori relaxation parameter p increases with the growth of axial stresses whereas parameter c (the time delay before the onset of relaxation) decreases with the growth of axial stresses and increases with the rise of the level of uniform compression. In the case of a fracture of an undamaged specimen, parameter p remains unchanged as the axial stresses grow, whereas parameter c increases slightly. Parameter variations in the case of a complex stress state with both varying deviatoric (differential stresses) and spherical parts (effective pressure) of the stress tensor take on a unified form when expressed in terms of Coulomb stresses. It is hypothesized that the time delay of the aftershock activity relaxation is determined by the kinetics of fracture in accordance with the kinetic concept of strength in solids. This hypothesis is supported by exponential dependence of parameter c on stresses and on the effective strength of the medium revealed in the experiments. Under this hypothesis, the dependences of parameter c on the Coulomb stresses can be unified for different effective strength values with the use of Zhurkov’s formula for durability of materials. The obtained parameter estimates for the dependence of c on strength and stresses suggest that the c value is determined by the difference of the strength and the acting stresses, indicating how far the stress state of the medium is from the critical state corresponding to the ultimate strength.

V. B. Smirnov

Institute of the Earth Physics of the Russian Academy of Sciences; Lomonosov Moscow State University; Institut de Physique du Globe de Paris

Author for correspondence.

Russian Federation, Bolshaya Gruzinskaya str., 10-1, Moscow 123242, Russia; 1, Leninskie gory, Moscow, 119991; Paris

A. V. Ponomarev

Institute of the Earth Physics of the Russian Academy of Sciences


Russian Federation, Bolshaya Gruzinskaya str., 10-1, Moscow 123242, Russia

S. A. Stanchits

Skolkovo Institute of Science and Technology


Russian Federation, 3 Nobelya street, Moscow 143026

M. G. Potanina

Lomonosov Moscow State University

1, Leninskie gory, Moscow, 119991

A. V. Patonin

Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Science


Russian Federation, Borok, 152742

G. Dresen

GFZ German Research Centre for Geosciences, Section III.2



C. Narteau

Institut de Physique du Globe de Paris


France, Paris

P. Bernard

Institut de Physique du Globe de Paris


France, Paris

S. M. Stroganova

Institute of the Earth Physics of the Russian Academy of Sciences


Russian Federation, Bolshaya Gruzinskaya str., 10-1, Moscow 123242, Russia

  1. Виноградов С.Д. О распределении числа импульсов по энергии при разрушении горных пород // Изв. АН СССР. Сер. геофиз. 1959. № 12. С. 1850–1852.
  2. Журков С.Н. Кинетическая концепция прочности твердых тел // Вестн. АН СССР. 1968. № 3. С. 46–52.
  3. Регель В.Р., Слуцкер А.И., Томашевский Э.Е. Кинетическая природа прочности твердых тел.М.: Наука. 1974. 560 с.
  4. Смирнов В.Б. Опыт оценки представительности данных каталогов землетрясений // Вулканология и сейсмология. 1997. № 4. С. 93–105.
  5. Смирнов В.Б. Прогностические аномалии сейсмического режима.I. Методические основы подготовки исходных данных. // Геофизические исследования. 2009. Т. 10. № 2. С. 7–22.
  6. Смирнов В.Б., Габсатарова И.П. Представительность каталога землетрясений северного Кавказа: расчетные данные и статистические оценки // Вестник ОГГГГН РАН. 2000. T. 14. № 4. С. 35–41.
  7. Смирнов В.Б., Завьялов А.Д. К вопросу о сейсмическом отклике на электромагнитное зондирование литосферы Земли // Физика Земли. 2012. № 7–8. С. 63–88.
  8. Смирнов В.Б., Пономарев А.В., Сергеева С.М. О подобии и обратной связи в экспериментах по разрушению горных пород // Физика Земли. 2001. № 1. С. 89–96.
  9. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука. 2003. 270 с.
  10. Bohnenstiehl D.R., Tolstoy M., Dziak R.P., Fox C.G., Smith D.K. Aftershock sequences in the mid-ocean ridge environment: an analysis using hydroacoustic data // Tectonophysics. 2002. V. 354. P. 49– 70.
  11. Creamer F.H., Kissslinger C. The relationship between temperature and the decay parameter for aftershock sequences near Japan. EOS. Trans. Am. Geophys. Union. 1993. V. 74. F417.
  12. Davidsen J., Gu C., Baiesi M. Generalized Omori–Utsu law for aftershock sequences in southern California // Geophys J Int. 2015. V. 201 (2). P. 965–978.
  13. Earthquakes: Radiated Energy and the Physics of Faulting/R. Abercombie at al. AGU Geophysical monograph 170. 2000. 327 p.
  14. Enescu B., Mori J., Miyazawa M. Quantifying early aftershock activity of the 2004 mid-Niigata Prefecture earthquake (Mw6.6) // J. Geophys. Res. 2007. V. 112. B04310. doi: 10.1029/2006 JB004629
  15. Goebel T.H.W., Becker T.W., Schorlemmer D., Stanchits S., Sammis C., Rybacki E., Dresen G. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics // JGR. 2012. V. 117. B03310. doi: 10.1029/2011 JB008763
  16. Gupta H. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India // Earth Science Reviews. 2002. V. 58. P. 279–310.
  17. Hatano T., Narteau C., Shebalin P. Common dependence on stress for the statistics of granular avalanches and earthquakes // Scientific Reports. 2015. V. 5. P. 12280.
  18. Helmstetter A., Shaw B.E. Relation between stress hetero¬geneity and aftershock rate in the rate‐and‐state model // J. Geophys. Res. Solid Earth. 2006. V. 111 (B7).
  19. Hirata T. Omori’s power law aftershock sequences of microfracturing in rock fracture experiment // J. Geophys Res. 1987. V. 92. P. 6215–6221.
  20. Holschneider M., Narteau C., Shebalin P., Peng Z., Schorlemmer D. Bayesian analysis of the modified Omori law // Journal of Geophys. Res. 2012. V. 117. B06317. doi: 10.1029/2011 JB009054
  21. Jaeger J.C., Cook N.G.W., Zimmerman R. Fundamentals of Rock Mechanics. Wiley-Blackwell. 2007. 488 p.
  22. Kagan Y.Y. Short-term properties of earthquake catalogs and models of earthquake source // Bull. Seism. Soc. Am. 2004. V. 94. № 4. P. 1207–1228.
  23. Kagan Y.Y., Houston H. Relation between mainshock rupture process and Omori’s law for aftershock moment release rate // Geophys J Int. 2005. V. 163 (3). P. 1039–1048
  24. Kanamori H. Earthquake Seismology // Treatise on geophysics. Elsevier B.V. 2015. V.4. 653 p.
  25. King G.C.P. Fault Interaction, Earthquake Stress Changes, and the Evolution of Seismicity // Earthquake Seismology in Treatise on geophysics / Ed. Kanamori H. Elsevier B.V. 2009. V. 4. P. 225–257.
  26. Kisslinger C., Jones L.M. Properties of aftershock sequences in southern California // J. Geophys. Res. 1991. V. 96. № 11. P. 947– 11958.
  27. Lei X., Ma Sh. Laboratory acoustic emission study for earthquake generation process // Earthq Sci. 2014. V. 27 (6). P. 627–646. doi: 10.1007/s11589–014–0103-y
  28. Lei X., Masuda K., Nishizawa O,. Jouniaux L., Liu L., Ma W., Satoh T. Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock // J Struct Geol. 2004. V. 26. P. 247–258.
  29. Leonard M., Kennett B.L.N. Multi-component autoregressive techniques for the analysis of seismograms // Phys. Earth Planet. Inter. 1999. V. 113 (1–4) P. 247–263.
  30. Lippiello E., Giacco F., Marzocchi W., Godano C., de Arcan¬gelis L. Mechanical origin of aftershocks. Sci Rep 5. 2015. 15560. doi: 10.1038/srep15560
  31. Lockner D.A., Byerlee J.D., Kuksenko V., Ponomarev A., Sidorin A. Quasi-static fault growth and shear fracture // Nature. 1991. V. 350. № 6313 P.39–42.
  32. Lockner D.A. et al. Observations of Quasistatic Fault Growth from Acoustic Emissions. Fault Mechanics and Transport Properties of Rocks. Ed. Evans B., Wong T.-F. London: Academic Press. 1992. P. 3–31.
  33. Lockner D.A. The role of acoustic emission in the study of rock fracture // Int J Rock Mech Min Sci Geomech Abstr. 1993. V. 30 P. 883–899.
  34. Lockner D.A., Byerlee J.D. Acoustic emission and fault formation in rocks. In Proc. 1 st Conf. on Acoustic Emission/Microseismic Activity in Geol. Structures and Materials. Trans-Tech. Publications. Clausthal-Zellerfeld / Ed. Hardy H.R. and Leighton F.W. 1977. P. 99–107.
  35. Lolli B., Gasperini P. Aftershocks hazard in Italy part I: estimation of time-magnitude distribution model parameters and computation of probabilities of occurrence // J Seismol. 2003. V. 7 (2). P. 235–257.
  36. Mekkawi M., Grasso J.-R., Schnegg P.A. A Long-Lasting Relaxation of Seismicity at Aswan Reservoir, Egypt, 1982–2001 // Bull. Seismol. Soc. Am. 2004. V. 94. P. 479–492.
  37. Mogi K. Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena // Bull Earthq Res Inst. 1962. V. 40. P. 125–173.
  38. Nanjo K., Enescu B., Shcherbakov R., Turcotte D., Iwata T., Ogata Y. Decay of aftershock activity for Japanese earthquakes // J Geophys Res Solid Earth. 2007. V. 112 (B8).
  39. Narteau C., Byrdina S., Shebalin P., Schorlemmer D. Common dependence on stress for the two fundamental laws of statistical seismology // Nature. 2009. V. 462. № 3. P. 642–646. doi: 10.1038/nature08553
  40. Narteau C., Shebalin P., Holschneider M. Loading rates in California inferred from aftershocks // Nonlin. Process. Geophys. 2008. V. 15. P. 245–263.
  41. Narteau C., Shebalin P., Holschneider M. Temporal limits of the power law aftershock decay rate // J. Geophys. Res. 2002. V. 107. P. B2359. doi: 10.1029/2002 JB001868
  42. Nelder J., Mead R. A simplex method for function minimization // Comput.J. 1965. V. 7. P. 308–312.
  43. Nur A., Booker J.R. Aftershocks caused by pore fluid flow? // Science. 1972. V. 175. P. 885– 888.
  44. Ojala I.O., Main I.G., Ngwenya B.T. Strain rate and temperature dependence of Omori law scaling constants of AE data: implications for earthquake foreshock-aftershock sequences // Geophys Res Lett. 2004. V. 31: L24617. doi: 10.1029/2004 GL020781
  45. Ommi S., Zafarani H., Smirnov V.B. Bayesian estimation of the Modified Omori Law parameters for the Iranian Plateau // J. Seismology. 2016. V. 20. P. 953–970. doi: 10.1007/s10950–016–9574–8
  46. Ouillon G., Sornette D. Magnitude‐dependent Omori law: theory and empirical study // J Geophys Res. Solid Earth. 2005. V. 110 (B4).
  47. Page R. Aftershocks and microaftershocks of the Great Alaska Earthquake of 1964 // Bull. Seismol. Soc. Am. 1968. V. 58. № 3. P. 1131–1168.
  48. Paterson M.S., Wong T.F. Experimental Rock Deformation – The Brittle Field. Berlin, Heidelberg. New York: Springer-Verlag. 2005. 348 p.
  49. Peng Z., Vidale J.E., Houston H. Anomalous early aftershock decay rate of the 2004 Mw6.0 Parkfield, California, earthquake // Geophys. Res. Lett. 2006. V. 33. L17307. doi: 10.1029/2006 GL026744
  50. Peng Z., Vidale J.E., Ishii M., Helmstetter A. Seismicity rate immediately before and after mainshock rupture from highfrequency waveforms in Japan // J. Geophys. Res. 2007. V. 112. B03306. doi: 10.1029/2006 JB004386
  51. Pickering G., Bull J.M., Sanderson D.J. Sampling power-low distribution // Tectonophysics. 1995. V. 248. P. 1–20.
  52. Rabinowitz N., Steinberg D.M. Aftershock decay of three recent strong earthquakes in the Levant // Bull. Seismol. Soc. Am. 1998. V. 88. P. 1580–1587.
  53. Rodkin M.V., Tikhonov I.N. The typical seismic behavior in the vicinity of a large earthquake // Physics and Chemistry of the Earth. 2016. doi: 10.1016/j.pce.2016.04.001
  54. Rudajev V. Vilhelm J., Lokajicek T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure // Int. Journ. Rock Mech. and Mining Sci. 2000. V. 37. P. 699–704.
  55. Scholz C. Experimental study of the fracturing process in brittle rock // J Geophys Res. 1968 a.V. 73. P. 1447–1454.
  56. Scholz C. Microfractures, aftershocks, and seismicity // Bull Seismol Soc Am. 1968 b. V. 58:3. P. 1117–1130.
  57. Schubnel A., Thompson B.D., Fortin J., Gueguen Y., Young R.P. Fluid-induced rupture experiment on Fon¬tainebleau sandstone: premonitory activity, rupture propagation, and aftershocks // Geophys Res Lett. 2007. V. 34. L19307. doi: 10.1029/2007 GL031076
  58. Shcherbakov R., Turcotte D.L., Rundle J.E. A generalized Omori’s law for earthquake aftershock decay // Geophys. Res. Lett. 2004. V. 31. P. L11613. doi: 10.1029/2004 GL019808
  59. Shebalin P., Narteau C. Depth dependent stress revealed by aftershocks // Nature communications. 2017. V. 8. 1317. doi: 10.1038/s41467–017–01446-y
  60. Shebalin P., Narteau C., Holschneider M. From alarm-based to rate-based earthquake forecast models // Bull. Seimol. Soc. of Am. 2012. V. 102 (1). P. 64–72.
  61. Smirnov V.B., Ponomarev A.V., Kartseva T.I., Mikhailov V.O., Chadha R.K., Aidarov F. Dynamics of Induced Seis¬micity during the Filling of the Nurek Reservoir // Izvestiya, Physics of the Solid Earth. 2018. V. 54. № 4. doi: 10.1134/S1069351318040110
  62. Smirnov V.B., Ponomarev A.V. Seismic regime relaxation properties from in situ and laboratory data // Izvestiya Russian Academy of Sciences // Phys. Solid Earth. 2004. V. 40 (10). P. 807–816.
  63. Smirnov V.B., Ponomarev A.V., Benard P., Patonin A.V. Regularities in transient modes in the seismic process according to the laboratory and natural modeling // Izvestiya Phys. Solid Earth. 2010. V. 46 (2). P. 104–135.
  64. Stanchits S., Fortin J., Gueguen Y., Dresen G. Initiation and propagation of compaction bands in dry and wet Bentheim sandstone // Pure and Applied Geophysics. 2009. V. 166. P. 843–868. doi: 10.1007/s00024–009–0478–1
  65. Stanchits S., Vinciguerra S., Dresen G. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite // Pure and Applied Geophysics 2006. V. 163. (5–6) P. 975–994. doi: 10.1007/s00024–006–0059–5
  66. Thompson B.D., Young R.P., Lockner D.A. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite // J Geophys Res. 2009. V. 114: B02205. doi: 10.1029/2008 JB005753
  67. Utsu T., Ogata Y., Matsu’ura R.S. The centenary of the Omori formula for a decay law of aftershock activity // J. Phys. Earth. 1995. V. 43. P. 1–33.
  68. Vilhelm J., Rudajev V., Ponomarev A.V., Smirnov V.B., Lokajíček T. Statistical study of acoustic emissions generated during the controlled deformation of migmatite specimens // International Journal of Rock Mechanics and Mining Scien¬ces. 2017. V. 100. P. 83–89. doi: 10.1016/j.ijrmms.2017.10.011
  69. Wiemer S., Katsumata K. Spatial variability of seismicity parameters in aftershock zones // J Geophys Res., Solid Earth. 1999. V. 104 (B6). P. 13135–13151.
  70. Wim Dubelaar C., Nijland T.G. The Bentheim sandstone: geology, petrophysics, varieties and its use as dimension stone. Engineering geology for society and territory. Springer / Eds. Lollino G. et al. 2015. V.8. P. 557–563. doi: 10.1007/978–3-319–09408–3_100
  71. Zang A., Wagner F.C., Dresen G. Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure // J. Geophys. Res. 1996. V. 101 (8) P. 17507–17521.
  72. Zhurkov S.N. Kinetic concept of the strength of solids // Int. J. Fract. Mech. 1965. V. 1. P. 311–323.


Abstract - 132

PDF (Russian) - 149




  • There are currently no refbacks.

Copyright (c) 2019 Российская академия наук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies