Corrections to the Theory of Elastic Bending of Thin Plates for 2D Models in the Reissner Approximation
- Autores: Trubitsyn A.P.1, Trubitsyn V.P.1
-
Afiliações:
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Edição: Nº 4 (2023)
- Páginas: 3-15
- Seção: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/658100
- DOI: https://doi.org/10.31857/S0002333723040129
- EDN: https://elibrary.ru/TMLDDQ
- ID: 658100
Citar
Texto integral
Resumo
Elastic bending stresses and strains in the lithosphere are typically calculated based on the Kirchhoff–Love (thin) plate theory. The criterion for its applicability is the smallness of plate thickness to length ratio. In oceanic plates, due to the buoyant force of the mantle, the main deformations are not uniformly distributed along the plate but are concentrated in the vicinity of the subduction zone. Therefore, the effective length of the bending part of the plate is a few fractions of the actual length, and the criterion of a thin plate is partially violated. In this paper, we analyze the possibility of applying thick plate bending equations. The existing variational theories of 3D bending of thick plates are much more complicated than the Kirchhoff–Love theory, as they involve solving three differential equations instead of one, and have limited application due to their complexity. Since geophysical applications frequently use 2D models, in this paper we analyze in detail the potential and accuracy of the thick plate bending theory for 2D models. After the conversion to the 2D plane strain and plane stress approximation, the original 3D Reissner thick plate bending equations are written out in the form similar to the Kirchhoff equations with additive corrections and are supplemented with the explicit formulas for longitudinal displacement. The comparison of the analytical solutions of the 2D Reissner equations with the exact solutions shows that the 2D approximation only provides a correction for the plate bending function. However, this correction refines the Kirchhoff–Love theory by almost an order of magnitude. At the same time, the solution of the equations in this case turns out to be almost as simple as the solution of the thin plate equations.
Palavras-chave
Sobre autores
A. Trubitsyn
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Autor responsável pela correspondência
Email: atrub@yandex.ru
Russia, 123242, Moscow
V. Trubitsyn
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: atrub@yandex.ru
Russia, 123242, Moscow
Bibliografia
- Доннелл Л.Г. Балки, пластины, оболочки. М.: Наука. 1982. 567 с.
- Рябенков Н.Г. Асимптотический метод в дискуссии по теории изгиба пластин // Вест. Каз. Энерг. Ун-та. 2012. № 3(14). С. 63–75.
- Сухотерин М.В., Барышников С.О., Кныш Т.П. Напряженно-деформированное состояние защемленной прямоугольной пластины Рейсснера // Инженерно-строительный журнал. 2017. № 8(76). С. 225–240.
- Теркот Д., Шуберт Дж. Геодинамика. М.: Мир. 1985. 360 с.
- Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. М.: Наука, Физматгиз. 1966. 636 с.
- Тимошенко С.П. Теория упругости. Л.-М.: ОНТИ. 1937. 433 с.
- Тимошенко С.П. Курс теории упругости. 1972. Киев: Наукова Думка. 498 с.
- Тимошенко С.П., Гудьер Дж. Теория упругости. М.: Наука. 1979. 560 с.
- Трубицын В.П. Изгибные деформации плит в моделях сильных субдукционных землетрясений // Физика Земли 2012. № 2. С. 3–13.
- Трубицын В.П., Трубицын A.П. Деформации упругого изгиба в океанических литосферных плитах // Докл. РАН. 2022. Т. 504. № 1. С. 60–64.
- Challamel N., Elishakoff Is. A brief history of first-order shear-deformable beam and plate models // Mechanics Research Communications. Elsevier. 2019. V. 102. Article 389.
- Reissner E. The effect of transverse shear deformation on the bending of elastic plates // J. Applied Mechanics. 1945. № 1(12). P. 69–77.
- Szilard R. Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods. John Wiley & Sons Inc. 2004. 1024 p.
Arquivos suplementares
