On Short-Period Dynamics in the Earth’s Core According to Ground-Based Observations of Geomagnetic Jerks
- Authors: Riabova S.A.1,2, Shalimov S.L.1
-
Affiliations:
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences
- Issue: No 1 (2023)
- Pages: 3-11
- Section: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/658141
- DOI: https://doi.org/10.31857/S0002333723010040
- EDN: https://elibrary.ru/BZPVVG
- ID: 658141
Cite item
Full Text
Abstract
The use of a special technique for processing variations of the geomagnetic field at several mid-latitude observatories allowed us to identify a series of jerks over a 17-year period, from 2004 to 2020. To interpret the experimental results showing that jerks follow with a quasi period of 3‒4 years, a probable mechanism of the occurrence of rapid changes in the geomagnetic field caused by unstable processes in the Earth’s core is proposed.
About the authors
S. A. Riabova
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences; Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences
Author for correspondence.
Email: riabovasa@mail.ru
123242 Russia, Moscow,; 119334 Russia, Moscow
S. L. Shalimov
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: riabovasa@mail.ru
123242 Russia, Moscow,
References
- Адушкин В.В., Рябова С.А., Спивак А.А. Геомагнитные эффекты природных и техногенных процессов. М.: ГЕОС. 2021. 264 с.
- Велихов Е.П. Устойчивость течения идеально проводящей жидкости между вращающимися цилиндрами в магнитном поле // Журн. экспериментальной и теоретической физики. 1959. Т. 36. № 5. С. 1398–1404.
- Голицын Г.С. Динамика природных явлений. М.: Физматлит. 2004. 344 с.
- Калинин Ю.Д. Вековые геомагнитные вариации и изменения длины суток // Метеорология и гидрология. 1949. № 3. С. 15‒19.
- Рябова С.А. Особенности вековой вариации геомагнитного поля на среднеширотных обсерваториях “Михнево” и “Бельск” // Геомагнетизм и аэрономия. 2019. Т. 59. № 1. С. 125–136. https://doi.org/10.1134/S0016794018060147
- Шалимов С.Л. О магниторотационной неустойчивости в земном ядре // Физика Земли. 2014. № 4. С. 3‒7.
- Шалимов С.Л., Ольшанская Е.В. О вариациях частоты вращения Земли, обусловленных нестабильными течениями в жидком ядре // Физика Земли. 2016. № 6. С. 139‒143.
- Abarca del Rio R., Gambis D., Salstein D.A. Interannual signals in length of day and atmospheric angular momentum // Annales Geophysicae. 2000. V. 18. P. 347‒364.
- Ahmad M.F., Isa N.A.M., Lim W.H., Ang K.M. Differential evolution: A recent review based on state-of-the-art works // Alexandria Engineering J. 2022. V. 61. № 5. P. 3831‒3872. https://doi.org/10.1016/j.aej.2021.09.013
- Alexandrescu M., Gibert D., Hulot G., LeMouel J.L. Detection of geomagnetic jerks using wavelet analysis // J. Geophysical Research. 1995. V. 100. P. 12557‒12572.
- Alexandrescu M., Gibert D., Hulot G., LeMouel J.L. Worldwide wavelet analysis of geomagnetic jerks // J. Geophysical Research. 1996. V. 101. P. 21975‒21994.
- Alexandrescu M., Gibert D., LeMouel J.L., Hulot G. An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks // J. Geophysical Research. 1999. V. 104. P. 17135‒17746.
- Bloxham J., Zatman S., Dumberry M. The origin of geomagnetic jerks // Nature. 2002. V. 420. P. 65‒68.
- Brown W., Mound J., Livermore P. Jerks abound: an analysis of geomagnetic observatory data from 1957 to 2008 // Physics of the Earth and Planetary Interiors. 2013. V. 223. P. 62–76.
- Chen C.W.S., Chan J.S.K., Gerlach R., Hsieh W.Y.L. A comparison of estimators for regression models with change points // Statistics and Computing. 2011. V. 21. P. 395–414. https://doi.org/10.1007/s11222-010-9177-0
- Chulliat A., Maus S. Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010 // J. Geophysical Research: Solid Earth. 2014. V. 119. P. 1531–1543.
- Chulliat A., Thébault E., Hulot G. Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks // Geophysical Research Letters. 2010. V. 37. № 7. L07301. https://doi.org/10.1029/2009GL042019
- Courtillot V., Le Mouel J.L. Time variations of the Earth’s magnetic field: From daily to secular // Annual Review of Earth and Planetary Sciences. 1988. V. 16. P. 389‒476.
- Das S., Mullick S.S., Suganthan P.N. Recent Advances in Differential Evolution – an Updated Survey // Swarm and Evolutionary Computation. 2016. V. 27. P. 1–30.
- Draper N.R., Smith H. Applied regression analysis. 3rd ed. V. 326. N.Y.: John Wiley & Sons. 2014. 158 p.
- Duan P., Huang C. Intradecadal variations in length of day and their correspondence with geomagnetic jerks // Nature Communications. 2020. V. 11. https://doi.org/10.1038/s41467-020-16109-8
- Freund R.J., Wilson W.J., Sa P. Regression analysis. 2nd ed. N.Y.: Academic Press. 2006. 270 p.
- Gillet N., Jault D., Canet E., Fournier A. Fast torsional waves and strong magnetic field within the Earth’s core // Nature. 2010. V. 465. P. 74‒77.
- Gire C., Le Mouel J.L., Ducruix J. Evolution of the geomagnetic secular variation field from the beginning of the century // Nature. 1984. V. 307. P. 349‒352.
- Golovchenko N. Least-squares fit of a continuous piecewise linear function. 2004. http://golovchenko.org/docs/ContinuousPiecewiseLinearFit.pdf
- Hawkins D.M. On the choice of segments in piecewise approximation // IMA Journal of Applied Mathematics. 1972. V. 9. № 2. P. 250‒256.
- Holme R., de Viron O. Geomagnetic jerks and a high-resolution length-of-day profile for core studies // Geophysical Journal International. 2005. V. 160. № 2. P. 435‒439.
- Jackson A. Time-dependency of tangentially geostrophic core surface motions // Physics of the Earth and Planetary Interiors. 1997. V. 103. P. 293–311.
- Jankowski J., Marianiuk J., Ruta A., Sucksdorff C., Kivinen M. Long-term stability of a torque-balance variometer with photoelectric converters in observatory practice // Surveys in Geophysics. 1984. V. 6. № 3/4. P. 367–380.
- Jault D., Gire C., Le Moule J.L. Westward drift, core motions and exchanges of angular momentum between core and mantle // Nature. 1988. V. 333. P. 353‒356.
- Kotzé P.B. The 2014 geomagnetic jerk as observed by southern African magnetic observatories // Earth, Planets Space. 2017. V. 69. №17. https://doi.org/10.1186/s40623-017-0605-7
- Le Mouel J.L., Ducruix J., Duyen C.H. The worldwide character of the 1969-70 impulse of the secular variation rate // Physics of the Earth and Planetary Interiors. 1982. V. 28. P. 337‒350.
- Loper D.E., Roberts P.H. Stelar and Planetary Magnetism / Soward A.M. (ed.). N.Y.: Gordon and Breach. 1983. 297 p.
- Macmillan S. A geomagnetic jerk for the early 1990’s // Earth and Planetary Science Letters. 1996. V. 137. P. 189‒192.
- Mandea M., Bellanger E., LeMouel J.-L. A geomagnetic jerk of the end of the 20th century // Earth and Planetary Science Letters. 2000. V. 183. P. 369‒373.
- Mandea M., Holme R., Pais A., Pinheiro K., Jackson A., Verbanac G. Geomagnetic jerks: Rapid core field variations and core dynamics // Space Science Reviews. 2010. V. 155. P. 147–175.
- Nagao H., Iyemori T., Higuchi T., Araki T. Lower mantle conductivity anomalies estimated from geomagnetic jerks // J. Geophysical Research: Solid Earth. 2003. V. 108. https://doi.org/10.1029/2002JB001786
- Olsen N., Mandea M. Rapidly changing flows in the Earth’s core // Nature Geoscience. 2008. V. 1. № 6. P. 390–394.
- Olsen N., Mandea M., Sabaka T.J., Tøffner-Clausen L. CHAOS-2-A geomagnetic field model derived from one decade of continuous satellite data // Geophysical J. International. 2009. V. 179. № 3. P. 1477–1487.
- Pais M.A., Jault D. Quasi-gestrophic flows responsible for the secular variation of the Earth’s magnetic field // Geophysical J. International. 2008. V. 173. № 2. P. 422‒443.
- Pavon-Carrasco F.J., Marsal S., Campuzano S.A. Torta J.M. Signs of a new geomagnetic jerk between 2019 and 2020 from Swarm and observatory data // Earth, Planets and Space. 2021. V. 73. https://doi.org/10.1186/s40623-021-01504-2
- Price K.V., Storn R.M., Lampinen J.A. Differential evolution: A practical approach to global optimization 1st ed. Springer: Berlin. 2005. 558 p.
- Roberts P.H., Glatzmaier G.A. Geodynamo theory and simulations // Reviews of Modern Physics. 2000. V. 72. P. 1081‒1123.
- Storn R., Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces // J. Global Optimization. 1997. V. 11. № 4. P. 341–359.
- Torta J.M., Pavón-Carrasco F.J., Marsal S., Finlay C.C. Evidence for a new geomagnetic jerk in 2014 // Geophysical Research Letters. 2015. V. 42. P. 7933–7940.
- Wainer H. Piecewise regression: A simplified procedure // British J. Mathematical and Statistical Psychology. 1971. V. 24. № 1. P 83‒92.
- Walker J.B., O’Dea P.L. Geomagnetic secular change impulses // Transactions of the American Geophysical Union. 1952. V. 33. P. 797‒800.
- Weber F.V., Roberts E.B. The 1950 world isogonic chart // J. Geophysical Research. 1951. V. 56. P. 81‒84.
- Whaler K., Hammer M., Finlay C., Olsen N. Core-mantle boundary flows obtained purely from Swarm secular variation gradient information // EGU General Assembly 2020. Online. 2020. EGU2020-9616. https://doi.org/10.5194/egusphere-egu2020-9616
- Yang L., Liu S., Tsoka S., Papageorgiou L.G. Mathematical programming for piecewise linear regression analysis // Expert Systems with Applications. 2016. V. 44. P. 156–167. https://doi.org/10.1016/j.eswa.2015.08.034
- http://www.intermagnet.org сайт Международной магнитной сети INTERMAGNET (International RealTime Magnetic Observatory Network.)
Supplementary files
