On Constructing Magnetic and Gravity Images of Mercury from Satellite Data

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A new technique for simultaneous reconstruction of “gravity” and “magnetic” images of Mercury from satellite data based on the regional version of S-approximations is proposed. The mathematical statement of the inverse problem on finding the images of a planet from the data on the potential fields recorded at different times with different accuracy is reduced to solving ill-conditioned systems of linear algebraic equations (LAES) with approximate right-hand sides. Based on the analytical approximations of the Mercury’s magnetic and gravity fields determined from the solution of the ill-conditioned SLAE, the distributions of the equivalen sources on the spheres are determined. The results of the mathematical experiment on constructing the magnetic image of Mercury from the radial component of the magnetic induction vector analytically continued towards the field sources are presented.

Texto integral

Acesso é fechado

Sobre autores

I.  Stepanova

Schmidt Institute of Physics of the Erath, Russian Academy of Sciences

Autor responsável pela correspondência
Email: tet@ifz.ru
Rússia, Moscow

A.  Yagola

Moscow State University

Email: tet@ifz.ru
Rússia, Moscow

D.  Lukyanenko

Moscow State University

Email: tet@ifz.ru
Rússia, Moscow

I.  Kolotov

Moscow State University

Email: tet@ifz.ru
Rússia, Moscow

Bibliografia

  1. Арнольд В.И., Хесин Б.А. Топологические методы в гидродинамике. М.: изд-во МЦНМО. 2007. 393 с.
  2. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по уравнениям математической физики. М.: Наука. 1980. 684 с.
  3. Владимиров В.В. Уравнения математической физики. М.: Наука. 1981. 512 с.
  4. Казанцев С.Г., Кардаков В.Б. Полоидально-тороидальное разложение соленоидальных векторных полей в шаре // Сибирский журнал индустриальной математики. 2019. Т. 22. № 3. С. 74–95.
  5. Раевский Д.Н., Степанова И.Э. О решении обратных задач гравиметрии с помощью модифицированного метода S-аппроксимаций // Физика Земли. 2015а. № 2. С. 44–54.
  6. Раевский Д.Н., Степанова И.Э. Модифицированный метод S-аппроксимаций. Региональный вариант // Физика Земли. 2015б. № 2. С. 55–66.
  7. Степанова И.Э., Щепетилов А.В., Михайлов П.С. Аналитические модели физических полей Земли в региональном варианте с учетом эллиптичности// Физика Земли. 2022. № 3. С. 121–135. doi: 10.31857/S0002333722060138
  8. Степанова И.Э., Щепетилов А.В., Погорелов В.В., Михайлов П.С. Структурно-параметрический подход при построении цифровых моделей рельефа и гравитационного поля Земли с использованием аналитических S-аппроксимаций // Геофизические процессы и биосфера. 2020. Т. 19. № 2. С. 107–116.
  9. Фрик П.Г, Соколов Д.Д, Степанов Р.А. Вейвлет-анализ пространственно-временной структуры физических полей // Успехи физических наук. 2021. Т. 191.
  10. Ягола А.Г., Степанова И.Э., Ван Янфей, Титаренко В.Н. Обратные задачи и методы их решения. Приложения к геофизике. М.: Бином. 2014. 214 с.
  11. Alexeev I.I. et al. Mercury’s magnetospheric magnetic field after the first two Messenger flybys // Icarus. 2010. V. 209. P. 23–39. doi: 10.1016/j.icarus.2010.01.024
  12. Anderson B.J., Acuña M.H., Lohr D.A., Scheifele J., Raval A., Korth H., Slavin J.A. The magnetometer instrument on Messenger // Space Sci. Rev. 2007. V. 131. P. 417–450. doi: 10.1007/s11214-007-9246-7
  13. Anderson B.J., Acuña M.H., Korth H., Purucker M.E., Johnson C.L., Slavin J.A., Solomon S.C., McNutt R.L. The structure of Mercury’s magnetic field from Messenger’s first flyby // Science. 2008. V. 321. P. 82–85. doi: 10.1126/science.1159081
  14. Anderson B.J., et al. The magnetic field of Mercury// Space Sci. Rev. 2010. V. 152. P. 307–339. doi: 10.1007/s11214-009-9544-3
  15. Anderson B.J., Johnson C.L., Korth H., Purucker M.E., Winslow R.M., Slavin J.A., Solomon S.C., McNutt R.L., Raines J.M., Zurbuchen T.H. The global magnetic field of Mercury from Messenger orbital observations // Science. 2011. V. 333. P. 1859–1862. doi: 10.1126/science.1211001
  16. Anderson B.J. et al. Low-degree structure in Mercury’s planetary magnetic field // J. Geophys. Res. 2012. V. 117. E00L12. doi: 10.1029/2012JE004159
  17. Anderson B.J., Johnson C.L., Korth H. A magnetic disturbance index for Mercury’s magnetic field derived from Messenger magnetometer data // Geochem. Geophys. Geosyst. 2013. V. 14. P. 3875–3886. doi: 10.1002/ggge.20242
  18. Benkhoff J., van Casteren J., Hayakawa H., Fujimoto M., Laakso H., Novara M., Ferri P., Middleton H.R., Ziethe R. BepiColombo–Comprehensive exploration of Mercury: Mission overview and science goals // Planet. Space Sci. 2010. V. 58. P. 2–20. doi: 10.1016/j.pss.2009.09.020
  19. Cain J.C., Wang Z., Kluth C., Schmitz D.R. Derivation of a geomagnetic model to N = 63 // Geophys. J. 1989. V. 97. P. 431–441.
  20. Cao H., Aurnou J.M., Wicht J., Dietrich W., Soderlund K.M., Russell C.T. A dynamo explanation for Mercury’s anomalous magnetic field // Geophys. Res. Lett. 2014. V. 41. P. 4127–4134. doi: 10.1002/2014GL060196
  21. Christensen U.R. A deep dynamo generating Mercury’s magnetic field // Nature. 2006. V. 444. P. 1056–1058. doi: 10.1038/nature05342
  22. Dietrich W., Wicht J. A hemispherical dynamo model: Implications for the Martian crustal magnetization // Phys. Earth Planet. Inter. 2013. V. 217. P. 10–21. doi: 10.1016/j.pepi.2013.01.001
  23. Dyment J., Arkani-Hamed J. Equivalent source magnetic dipoles revisited // Geophys. Res. Lett. 1998. V. 25(11). P. 2003–2006. doi: 10.1029/98GL51331
  24. Emilia D.A. Equivalent sources used as an analytic base for processing total magnetic field profiles// Geophysics. 1973. V. 38. P. 339–348. doi: 10.1190/1.1440344
  25. Gudkova T., Stepanova I., Batov A., Shchepetilov A. Modified method S- and R-approximations in solving the problems of Mars’s morphology // Inverse Problems in Science and Engineering. 2021. V. 29. P. 790–804. doi: 10.1080/17415977.2020.1813125
  26. Gudkova T., Stepanova I., Batov A. Density anomalies in subsurface layers of mars: model estimates for the Site of the InSight Mission Seismometer // Solar System Research. 2020. V. 54. P. 15–19. doi: 10.1134/S0038094620010037
  27. Hauck S.A. II, Solomon S.C., Smith D. A Predicted recovery of Mercury’s internal structure by Messenger // Geophys. Res. Lett. 2007. V. 34. P. L18201. doi: 10.1029/2007GL030793
  28. Hood L.L., Oliveira J.S., Galluzzi V.D., Rothery A. Investigating sources of Mercury’s crustal magnetic field: further mapping of Messenger magnetometer data, JGR Planets. 29 August. 2018. https://doi.org/10.1029/2018JE005683
  29. Johnson C.L., et al. Messenger observations of Mercury’s magnetic field structure // J. Geophys. Res. 2012. V. 117. P. E00L14. doi: 10.1029/2012JE004217
  30. Kolotov I., Lukyanenko D., Stepanova I., Wang Y., Yagola A. Recovering the magnetic image of Mars from satellite observations // Journal of Imaging, 2021. V. 7. № 11. P. 234. https://doi.org/10.3390/jimaging7110234
  31. Kolotov I.I., Lukyanenko D.V., Stepanova I.E., Wang Y., Yagola A.G. Recovering the magnetic properties of Mercury from satellite observations // Eurasian Journal of Mathematical and Computer Applications. 2022. V. 10. № 2. P. 26–41.
  32. Konopliv A.S., Park R.S., Ermakov A.I. The Mercury gravity field, orientation, love number, and ephemeris from the Messenger radiometric tracking data // Icarus. V. 335. 1 January 2020. 113386.
  33. Langlais B., Purucker M. A polar magnetic paleopole associated with Apollinaris Patera, Mars // Planet. Space Sci. 2007. V. 55. P. 270–279. doi: 10.1016/j.pss.2006.03.008
  34. Langlais B., Purucker M.E., Mandea M. Crustal magnetic field of Mars // J. Geophys. Res. 2004. V. 109. E02008. doi: 10.1029/2003JE002048
  35. Margot J.L., Peale S.J., Jurgens R.F., Slade M.A., Holin I.V. Large longitude libration of Mercury reveals a molten core // Science. 2007. V. 316. P. 710–714. doi: 10.1126/science.1140514
  36. Mayhew M.A. Inversion of satellite magnetic anomaly data // J. Geophys. 1979. V. 45. P. 119–128.
  37. Messenger Mission: Magnetometer (MAG) Instrument. – URL: https://pds-ppi.igpp.ucla.edu/search/view/?f = yes&id = pds: //PPI/mess-mag-calibrated/data/mbf/2011
  38. Milillo A., Fujimoto M., Murakami G., Benkhoff J., Zender J., Aizawa S. et al. Investigating Mercury’s Environment with the Two-Spacecraft BepiColombo Mission // Space Science Reviews. 2020. V. 216. P. 93.
  39. Ness N.F., Behannon K.W., Lepping R.P., Whang Y.C., Schatten K.H. Magnetic field observations near Mercury: Preliminary results from Mariner 10 // Science. 1974. V. 185. P. 151–160. doi: 10.1126/science.185.4146.151
  40. Ness N.F., Behannon K.W., Lepping R.P., Whang Y.C. The magnetic field of Mercury, 1 // J. Geophys. Res. 1975. V. 80. P. 2708–2716. doi: 10.1029/JA080i019p02708
  41. Oliveira J.S., Langlais B., Pais M.A., Amit H. A modified equivalent source dipole method to model partially distributed magnetic field measurements, with application to Mercury // JGR Planets. 15 May. 2015. https://doi.org/10.1002/2014JE004734
  42. Philpott L.C., Johnson C.L., Winslow R.M., Anderson B.J., Korth H., Purucker M.E., Solomon S.C. Constraints on the secular variation of Mercury’s magnetic field from the combined analysis of Messenger and Mariner 10 data // Geophys. Res. Lett. 2014. V. 41. P. 6627–6634. doi: 10.1002/2014GL061401
  43. Plagemann S. Model of the internal constitution and temperature of the planet Mercury // J. Geophys. Res. 1965. V. 70. P. 985–993. doi: 10.1029/JZ070i004p00985
  44. Purucker M.E., Sabaka T.J., Langel R.A. Conjugate gradient analysis: A new tool for studying satellite magnetic data sets // Geophys. Res. Lett. 1996. V. 23. P. 507–510. doi: 10.1029/96GL00388
  45. Purucker M.E., Langel R.A., Rajaram M., Raymond C. Global magnetization models with a priori information // J. Geophys. Res. 1998. V. 103. P. 2563–2584. doi: 10.1029/97JB02935
  46. Reshetnyak M. Yu. Spatial Spectra of the geomagnetic Field in the Observations and Geodynamo Models // Izvestiya, Physics of the Solid Earth. 2015. V. 51. № 3. P. 354–361.
  47. Salnikov A., Stepanova I., Gudkova T., Batov A. Analytical modeling of the magnetic field of Mars from satellite data using modified S-approximations // Doklady Earth Sciences 2021. V. 499. P. 575–579.
  48. Stepanova I., Lukyanenko D., Kolotov I., Shchepetilov A. On the Unique Solvability of Inverse Problems of Magnetometry and Gravimetry // Mathematics. 2023. V. 11(14). P. 3230. https://doi.org/10.3390/math11143230
  49. Strakhov V., Stepanova I. The S-approximation method and its application to gravity problems. Izvestiya, Physics of the SolidEarth. 2002a. V. 16. P. 91–107.
  50. Strakhov V., Stepanova I. Solution of gravity problems by the S-approximation method (Regional Version) // Izvestiya, Physics ofthe Solid Earth. 2002b. V. 16. P. 535–544.
  51. Thébault E., Schott J.J., Mandea M. Revised spherical cap harmonic analysis (R-SCHA): Validation and properties // J. Geophys. Res. 2006. V. 111. B01102. doi: 10.1029/2005JB003836
  52. Toepfer S., Narita Y., Glassmeier K.H. et al. The Mie representation for Mercury’s magnetic field // Earth Planets Space. 2021. V. 73. P. 65. https://doi.org/10.1186/s40623-021-01386-4
  53. Uno H., Anderson B.J., Korth H., Johnson C.L., Solomon S.C. Modeling Mercury’s internal magnetic field with smooth inversions // Earth Planet. Sci. Lett. 2009. V. 285. P. 328–339. doi: 10.1016/j.epsl.2009.02.032
  54. Wicht J., Heyner D. Mercury’s magnetic field in the Messenger era. Planetary. Geodesy and Remote Sensing / S. Jin (ed.). CRC Press. 2014. P. 223–262. doi: 10.1201/b17624-11

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. (a) - Bz-component of Mercury's magnetic field from Messenger mission data; (b) - map of isolines of Mercury's magnetic field near the surface plotted using regional S-approximations.

Baixar (2MB)
3. Fig. 2. (a) - Schematic representation of the projections of the Messenger station trajectories on the Mercury equatorial plane; (b) - Schematic representation of the Messenger station trajectories as a surface in three-dimensional space.

Baixar (1MB)
4. Fig. 3. Magnetic mass distribution found from the Mercury magnetic field analytically extended 50 km upward.

Baixar (1MB)
5. Fig. 4. Magnetic mass distribution found from the Mercury magnetic field analytically extended 100 km upward.

Baixar (1MB)
6. Fig. 5. Model gravitational field of Mercury.

Baixar (1MB)
7. Fig. 6. Distribution of equivalent gravitational sources determined from the field at an altitude of 50 km from the Mercury surface.

Baixar (1012KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024