Aftershock Area Assessment Based on the First Aftershocks at the Khibiny Deposits

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

This paper examines the construction of an aftershock activity area in conditions of natural and mining-induced seismicity after the data on the first aftershocks. The study area is apatite-nepheline deposits located in the southern part of the Khibiny massif. A wide range of aftershock varied in shape, location, and orientation has been investigated. The size of the area has been determined by scaling based on physical and statistical characteristics calculated from both the main shock and the first aftershocks. The criterion based on an error diagram has been used to quantitatively compare a large number of different variants. As a result, the optimal area type has been selected, showing the best results of the quantitative test based on seismicity data on the study area for 1996–2022. The technique can be used to predict the area of aftershock activity distribution at the Khibiny massif deposits after a natural–mining-induced earthquake based on operational processing data.

Texto integral

Acesso é fechado

Sobre autores

A. Motorin

Kola Branch of the Geophysical Survey of the Russian Academy of Sciences; Kirovsk Branch of Apatit JSC

Email: bars.vl@gmail.com
Rússia, Apatity, 184209; Kirovsk, 184250

S. Baranov

Kola Branch of the Geophysical Survey of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: bars.vl@gmail.com
Rússia, Apatity, 184209

Bibliografia

  1. Адушкин В.В. Сейсмичность взрывных работ на территории европейской части России // Физика Земли, 2013, N 2. C. 110–130. doi: 10.7868/8000233371301002Х
  2. Баранов С.В., Жукова С.А., Корчак П.А., Шебалин П.Н. Продуктивность техногенной сейсмичности // Физика Земли. № 3. 2020. С. 40–51. doi: 10.31857/S0002333720030011
  3. Баранов С.В., Шебалин П.Н. О прогнозировании афтершоковой активности. 2. Оценка области распространения сильных афтершоков // Физика Земли. 2017. № 3 C. 43–61. doi: 10.7868/S0002333717020028
  4. Воробьева И.А., Шебалин, Гвишиани А.Д., Дзебоев Б.А., Дзеранов Б.В. Параметры сейсмического режима восточного сектора Арктической зоны Российской Федерации // Физика Земли. 2024. № 5. С. 38–56.
  5. Козырев А.А., Панин В.И., Семенова И.Э., Федотова Ю.В., Рыбин В.В. Геомеханическое обеспечение технических решений при ведении горных работ в высоконапряженных массивах // Физико-технические проблемы разработки полезных ископаемых. 2012. № 2. С. 46–55.
  6. Козырев А.А., Семенова И.Э., Рыбин В.В., Панин В.И., Федотова Ю.В., Константинов К.Н., Сальников И.В., Гадючко А.В., Белоусов В.В., Корчак П.А., Стрешнев А.А. Указания по безопасному ведению горных работ на месторождениях, склонных и опасных по горным ударам (Хибинские апатит-нефелиновые месторождения). Апатиты: ООО “Апатит-Медиа”. 2016. 112 с.
  7. Корчак П.А., Жукова С.А., Меньшиков П.Ю. Становление и развитие системы мониторинга сейсмических процессов в зоне производственной деятельности АО “Апатит” // Горный журнал. 2014. № 10. С. 42–46.
  8. Марков Г. Напряженность пород в Хибинских рудниках и ее связь с современными тектоническими движениями земной коры. Исследования строения и современных движений земной коры на Кольском геофизическом полигоне. 1972. C. 147–152.
  9. Приказ Ростехнадзора от 08.12.2020 № 505. Редакция от 08.12.2020. Контур. Норматив. URL: https://normativ.kontur.ru/document?moduleId=1&documentId=384179 (дата обращения: 02.04.2024).
  10. Раутиан Т.Г. Энергия землетрясений. Методы детального изучения сейсмичности. М.: изд-во АН СССР. 1960. С. 75–114. Тр. ИФЗ АН СССР; № 9(176).
  11. Семенова И.Э. Исследование трансформации напряженно-деформированного состояния Хибинской апатитовой дуги в процессе крупномасштабной выемки полезных ископаемых // Горный информационно-аналитический бюллетень. 2016. № 4. С. 300–313.
  12. Шебалин П.Н., Баранов С.В. О прогнозировании афтершоковой активности. 5. Оценка длительности опасного периода // Физика Земли. 2019. № 5. С. 22–37. doi: 10.31857/S0002-33372019522-37
  13. Arzamastsev A.A., Arzamastseva L.V., Zhirova A.M., Glaznev V.N. Model of formation of the Khibiny-Lovozero ore-bearing volcanic-plutonic complex // Geology of Ore Deposits. 2013. V. 55. P. 341–356. doi: 10.1134/S1075701513050024
  14. Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Phys. Rev. E. 2004. V. 69 (6). P. 066106-1–066106-8. doi: 10.1103/PhysRevE.69.066106
  15. Ivanyuk G.Y., Yakovenchuk V.N., Pakhomovsky Y.A. Where are new minerals hiding? The main features of rare mineral localization within alkaline massifs. Minerals as advanced materials II. 2012. P. 13–24. doi: 10.1007/978-3-642-20018-2_2
  16. Gutenberg B., Richter C. F. Earthquake magnitude, intensity, energy, and acceleration: (Second paper) // Bulletin of the seismological society of America. 1956. V. 46. № 2. P. 105–145.
  17. Kanamori H., Anderson D.L. Theoretical Basis of Some Empirical Relations in Seismology // Bulletin of the Seismological Society of America. 1975. V. 65. P. 1073–95. doi: 10.1785/BSSA0650051073
  18. Kozyrev A.A., Semenova I.E., Zhukova S.A., Zhuravleva O.G. Factors of seismic behavior change and localization of hazardous zones under a large-scale mining-induced impact // Russian Mining Industry. 2022. V. 6. P. 95–102. doi: 10.30686/1609-9192-2022-6-95-102
  19. Molchan G. M., Dmitrieva O. E. Aftershock identification: methods and new approaches // Geophys. J. Int. 1992. V. 109. Is. 3. P. 501–516.
  20. Molchan G. Space-time earthquake prediction: the error diagrams // Pure Appl. Geophys. 2010. V. 167. № 8–9. P. 907–917. doi: 10.1007/s00024-010-0087-z
  21. Molchan G. Structure of optimal strategies in earthquake prediction // Tectonophysics. 1991. V. 193. P. 267–276.
  22. Motorin A., Baranov S. Distribution of Strongest Aftershock Magnitudes in Mining-Induced Seismicity // Frontiers in Earth Science. 2022. V. 10. P. 902812. 10.3389/feart.2022.902812
  23. Plenkers K., Kwiatek G., Nakatani M., Dresen G., Group J. Observation of Seismic Events with Frequencies f > 25 kHz at Mponeng Deep Gold Mine, South Africa // Seismological Research Letters. 2010. V. 81. P. 467–478. doi: 10.1785/gssrl.81.3.467
  24. Shebalin P., Narteau C., Holschneider M., Zechar J. Combining earthquake forecast models using differential probability gains // Earth, Planets and Space. 2014. V. 66. № 37. P. 1–14.
  25. Shebalin P.N., Narteau C., Baranov S.V. Earthquake Productivity Law // Geophysical Journal International. 2020 V. 222. P. 1264–1269. doi: 10.1093/gji/ggaa252
  26. Zaliapin I., Ben-Zion, Y. A global classification and characterization of earthquake clusters // Geophys. J. Int. 2016. V. 207. P. 608–634.
  27. Zechar J.D., Jordan T.H. Testing alarm-based earthquake predictions // Geophys J Int. 2008. V. 172. P. 715–724.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Seismic monitoring network (a) and seismicity of apatite-nepheline deposits in the southern part of the Khibiny massif for 1996-2022. (b); (a) - location of seismic sensors (white triangles); the inset rectangle shows the location of the study area; Roman numerals indicate the territories of the Kirov and Rasvumchorr mines; (b) - epicentres of seismic events with M ≥ 1.5 for the period from 1996 to 2022 according to the monitoring network of Apatit's KF; numerals indicate: 1 - Kukisvumchorr deposit; 2 - Yuksporskoye deposit (mined by Kirov mine); 3 - Apatitovyi Circus deposit (Rasvumchorr mine); 4 - Rasvumchorr plateau (mined by Vostochny mine).

Baixar (1MB)
3. Fig. 2. Optimal areas stadium, circle (a) and ellipse (b) calculated for aftershocks initiated by the mountain tectonic shock on 09.01.2018, M = 2.6; coordinates are given relative to the main shock (1 - main shock; 2 - boundary of the training region (a circle of diameter 10RL with the centre in the main shock); 3 - events with M ≥ 0 from the training set; 4 - target aftershocks with M ≥ 0.6; 5 - rupture; 6 - predicted ellipse and stadium; 7 - predicted circle).

Baixar (257KB)
4. Fig. 3. Error diagram (a) and loss function γ (b) calculated for the optimal stadium-shaped aftershock region (row 1, Table 2). Circles show points corresponding to 0 - "neutral", 1 - "soft", and 2 - "hard" prediction strategies (see Table 3); in panel (a) thin straight lines show tangents to the error path (bold curve) at the limit points.

Baixar (164KB)
5. Fig. 4. Example of the optimal area of postseismic activity in the form of a stadium (row 1, Table 1) calculated for aftershocks c M ≥ 0.6 caused by the mountain tectonic impact on 01.09.2018, M = 2.6; 1 - main shock; 2 - events with M ≥ 0 from the training set; 3 - target aftershocks with M ≥ 0.6; 4 - gap of length RL = 0.12 km, coinciding with the stadium length; 5, 6, 7 - optimal stadiums of width 0.6RL, 1.18RL, 3.26RL, corresponding to the limiting (‘soft’, ‘neutral’ and ‘hard’) forecast strategies.

Baixar (259KB)
6. Fig. 5. Error diagram (a) and loss function γ (b) calculated from series with at least one target aftershock, for a region of aftershocks in the form of a circle with the centre at the main point. The circles show the points corresponding to 0 - "neutral", 1 - "soft", and 2 - "hard" prediction strategies; in panel (a) thin lines show the tangents to the error path (bold curve) at the limit points.

Baixar (172KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024