Two-Dimensional Inversion of Magnetotelluric Data in the Study of Three-Dimensional Media

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A three-dimensional geoelectric model of the tectonosphere has been constructed, containing typical geoelectric heterogeneities at three structural levels: the uplift and depression of the basement roof, conductive prisms in the consolidated crust, and the asthenospheric uplift in the upper mantle. Synthetic magnetotelluric data have been calculated and their sensitivity to geoelectric structures has been analyzed. A two-dimensional smoothing inversion of the synthetic data has been performed along two perpendicular profiles. Despite significant three-dimensional effects, the position of the basement roof has been reconstructed quite accurately in the obtained sections, rough images of crustal structures have been obtained, and the mantle structure is poorly resolved. The influence of random noise of various levels on the inversion results has been estimated. In the future, a three-dimensional inversion of the synthetic data is planned.

Texto integral

Acesso é fechado

Sobre autores

D. Popov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: crossbrian97@mail.ru

Faculty of Geology

Rússia, Moscow

P. Pushkarev

Lomonosov Moscow State University

Email: pavel_pushkarev@list.ru

Faculty of Geology

Rússia, Moscow

Bibliografia

  1. Бердичевский М.Н., Дмитриев В.И. Модели и методы магнитотеллурики. М: Научный мир. 2009. 677 с.
  2. Бердичевский М.Н., Дмитриев В.И., Жданов М.С. Возможности и проблемы современной магнитотеллурики // Физика Земли. 2010. № 8. С. 4–11.
  3. Бердичевский М.Н., Дмитриев В.И., Новиков Д.Б., Пастуцан В.В. Анализ и интерпретация магнитотеллурических данных. М: Диалог-МГУ. 1997. 161 с.
  4. Варенцов Ив.М. Общий подход к решению обратных задач магнитотеллурики в кусочно-непрерывных средах // Физика Земли. 2002. № 11. С. 11–33.
  5. Дмитриев В.И. Электромагнитные поля в неоднородных средах. М: МГУ. 131 с.
  6. Куликов В.А., Каминский А.Е., Яковлев А.Г. Совместная двумерная инверсия данных электротомографии и аудиомагнитотеллурических зондирований при решении рудных задач. Записки Горного института. 2017. Т. 223. С. 9–19.
  7. Каминский А.Е. Программа интерпретации магнитотеллурических зондирований ZondMT2d. Руководство пользователя. СПб.: Zond Software. 2006. 22 с.
  8. Новожинский К., Пушкарев П.Ю. Анализ эффективности программ для двумерной инверсии магнитотеллурических данных // Физика Земли. 2001. № 6. С. 72–85.
  9. Попов Д.Д., Пушкарев П.Ю. Чувствительность магнитотеллурических зондирований к типичным аномалиям электропроводности в тектоносфере // Вестник Московского университета. Сер. 4. Геология. 2023. № 6. С. 134–143.
  10. DeGroot-Hedlin C., Constable S. Occam’s inversion to generate smooth two-dimensional models from magnetotelluric data // Geophysics. 1990. V. 55. № 12. P. 1613–1624.
  11. Jones F.W., Price A.T. The perturbations of alternating geomagnetic fields by conductivity anomalies // Geophysical Journal of the Royal Astronomical Society. 1970. V. 20. P. 317–334.
  12. Jupp D.L.B., Vozoff K. Two-dimensional magnetotelluric inversion // Geophysical Journal of the Royal Astronomical Society. 1977. V. 50. P. 333–352.
  13. Mackie R.L., Madden T.R., Wannamaker P.E. Three-dimensional magnetotelluric modeling using difference equations — theory and comparison to integral equation solutions // Geophysics. 1993. V. 58. P. 215–226.
  14. Rodi W., Mackie R.L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion // Geophysics. 2001. V. 66. P. 174–187.
  15. Siripunvaraporn W., Egbert G. An efficient data-subspace inversion method for 2-D magnetotelluric data // Geophysics. 2000. V. 65. № 3. P. 791–803.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Section of the sedimentary cover along the central meridional profile.

Baixar (210KB)
3. Fig. 2. Map of the total longitudinal conductivity of the sedimentary cover.

Baixar (294KB)
4. Fig. 3. Map of the location of conducting prisms in the consolidated crust.

Baixar (243KB)
5. 4. Deep sections along the central meridional and latitudinal profiles, reflecting the position of conducting crustal prisms and asthenospheric uplift.

Baixar (393KB)
6. Fig. 5. Maps of the UES at a depth of 60 km (the roof of the asthenospheric uplift) and 120 km (the base of the uplift).

Baixar (383KB)
7. 6. Amplitude (a) and phase (b) Zeff curves, central meridional profile.

Baixar (576KB)
8. 7. Amplitude (a) and phase (b) Zeff curves, central latitudinal profile.

Baixar (428KB)
9. 8. Maps of the polar diagrams |Zxy| and |Zxx|. On the left is a period of 21.5 s, on the right — 464 s.

Baixar (896KB)
10. 9. Maps of induction arrows: real ReW (red) and imaginary ImW (green). On the left is a period of 21.5 s, on the right — 464 s.

Baixar (928KB)
11. Fig. 10. Pseudo-sections of the parameters N, skewS, skewB and α.

Baixar (975KB)
12. 11. Geoelectric sections up to a depth of 5 km along the central meridional profile according to: (a) — Z⊥; (b) — arg(Z; (c) - jointly Z⊥ and W��. The white line is the true position of the roof of the foundation.

Baixar (878KB)
13. Fig. 12. Geoelectric sections up to a depth of 100 km along the central meridional profile according to: (a) — Zeff; (b) — Z⊥; (c) — arg(Z. The dotted line represents the true boundaries.

Baixar (988KB)
14. Fig. 13. Geoelectric sections up to a depth of 100 km along the central latitudinal profile according to: (a) — Zeff; (b) — Z⊥; (c) — arg(Z. The dotted line represents the true boundaries.

Baixar (975KB)
15. Fig. 14. Geoelectric sections up to a depth of 100 km along the central meridional (a) and (b) and latitudinal (c) and (d) profiles according to the data of joint inversion: (a) and (c) — Zeff and W (b) and (d) - Z⊥ and W. The dotted line represents the true boundaries.

Baixar (945KB)
16. 15. Geoelectric sections up to a depth of 100 km along the central meridian profile according to Z⊥ data with different noise levels: (a) - 0%; (b) — 2%; (c) — 5%; (d) — 10%; (e) — 20%. The dotted line shows the true boundaries.

Baixar (969KB)
17. 1

Baixar (54KB)
18. 2

Baixar (56KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025