An Analysis of Variations in Tectonic Subsidence of the Basin and Construction of Alternative Models of Thermal Evolution of Sedimentary Basins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Numerical reconstructions of thermal regime of sedimentary strata of the Mannar basin (Sri Lanka) in the area of the Dorado North well and the West Siberia basin (Tomsk region) in the area of the Ostaninskaya well presented in [Premarathne et al., 2016; Isaev et al., 2021] are compared with the corresponding reconstructions obtained in the GALO system for basin modeling. These examples show that the use of modeling systems with the specification of the heat flow at the base of sedimentary strata can give false picture of the thermal history of the basin, despite the coincidence of the calculated values of vitrinite reflectance with the values measured in the modern sedimentary section of the basin. The application of the analysis of variations in tectonic subsidence of the basin in the GALO modeling system makes it possible to estimate the amplitude and duration of the thermal activation events and extension (thinning of the crust) of the lithosphere and thereby overcome the problem with specification of the heat flow at relatively shallow basin depths. The alternative model of the basin thermal evolution constructed in this way relies on the same modeling input database as the heat flow fitting systems at the base of sedimentary strata, but only with the addition of the modern depth of the Mohorovicic discontinuity.

Full Text

Restricted Access

About the authors

Y. I. Galushkin

Lomonosov Moscow State University

Author for correspondence.
Email: yu_gal@mail.ru

Earth Science Museum

Russian Federation, Moscow, 119991

References

  1. Артюшков Е.В. Физическая тектоника. М.: Наука. 1993. 457 с.
  2. Архипов С.А., Волкова В.С., Зыкин В.С. Календарь биотических и абиотических событий позднего кайнозоя Западной Сибири // Стратиграфия. Геологическая корреляция. Т. 1. № 6. С.53–58.
  3. Бурштейн Л.М., Жидкова Л.В., Конторович А.Э., Меленевский В.Н. Модель катагенеза органического вещества (на примере баженовской свиты) // Геология и геофизика. 1997. № 6. С. 1070–1078.
  4. Галиева М.Ф., Алеева А.О., Исаев В.И. Очаги генерации углеводородов и их аккумуляция в доюрском разрезе Сельвейкинской площади глубокого бурения (Томская область) // Нефтегазовая геология. Теория и практика. 2020. Т. 15 (3). С. 1–16. DOI: https://doi.org/10.17353/2070-5379/26_2020
  5. Галушкин Ю.И. Температурные условия и положение зон генерации углеводородов в процессе развития осадочных бассейнов: описание методов и программы расчета // Жизнь Земли. 1990. Т. 25. С. 102–108.
  6. Галушкин Ю.И. Моделирование осадочных бассейнов и оценка их нефтегазоносности. М.: Научный мир. 2007. 456 с.
  7. Галушкин Ю. И. Термическая история литосферы Колтогорско-Уренгойского грабена Западно-Сибирского бассейна в районе скв. СГ-6 — численная реконструкция в рамках системы моделирования плоских бассейнов ГАЛО // Физика Земли. 2023. № 4. С. 115–134.
  8. Гаврилов В.П., Галушкин Ю.И. Геодинамический анализ нефтегазоносных бассейнов (бассейновое моделирование). М.: Недра. 2010. 227 с.
  9. Добрецов Н.Л., Полянский О.П., Ревердатто В.В., Бабичев А.В. Динамика нефтегазоносных бассейнов в Арктике и сопредельных территориях как отражение мантийных плюмов и рифтогенеза // Геология и геофизика. 2013. Т. 54(8). С. 1145–1161.
  10. Исаев В.И. Палеотемпературное моделирование осадочного разреза и нефте-газообразование // Тихоокеанская геология. 2004. Т. 23 (5). С. 101–115.
  11. Исаев В.И., Фомин А.Н. Очаги генерации нефтей баженовского и тогурского типов в южной части Нюрольской мегавпадины // Геология и геофизика. 2006. Т. 47 (6). С. 734–745.
  12. Исаев В.И., Лобова Г.А., Коржов Ю.В., Кузина М.Я., Кудряшова Л.К., Сунгурова О.Г. Стратегия и основы технологии поисков углеводородов в доюрском основании Западной Сибири. Томск: изд-во ТПУ. 2014. 112 с.
  13. Исаев В.И., Искоркина А.А., Лобова Г.А., Фомин А.Н. Палеоклиматические факторы реконструкции термической истории баженовской и тогурской свит юго-востока Западной Сибири // Геофизический журнал. 2016. Т. 38 (4). С. 3–25.
  14. Исаев В.И., Галиева М.Ф., Алеева Ф.О., Лобова Г.А., Старостенко В.И., Фомин А.Н. Палеотемпературное моделирование очагов генерации углеводородов и их роль в формировании залежей “палеозойской” нефти (Останинское месторождение, Томская область) // Георесурсы. 2021. Вып. 1. Т. 23. С. 2–16. DOI: https://doi.org/10.18599/grs.2021.1.1
  15. Конторович А.Э., Бурштейн Л.М., Малышев Н.А. и др. Историко-геологическое моделирование процессов нафтидогенеза в мезозойско-кайнозойском осадочном бассейне Карского моря (бассейновое моделирование) // Геология и геофизика. 2013. Т. 54 (8). С. 1179–1226.
  16. Смирнов Я.Б. Тепловое поле территории СССР: пояснительная записка к картам теплового потока и глубинных температур в масштабе 1: 10000000. М.: ГУГК. 1980. 150 с.
  17. Предтеченская Е. А., Шиганова О. В., Фомичев А. С. Кагенетические и гидромеханические аномалии в нижне-среднеюрских нефтегазоностных отложениях Западной Сибири как индикаторы флюидодинамических процессов в зонах дизьюнктивных нарушений // Литосфера. 2009. №6. С. 54–65.
  18. Bailli P.W., Sha R.D., Liyanaarachch D.T.P., Jayaratn M.G. A new Mesozoic sedimentary basin, offshore Sri Lanka. Proceedings of EAGA 64th Conference & Exhibition, (Florence, Italy). 2003.
  19. Baer A.J. Geotherms evolution of the lithosphere and plate tectonics // Tectonophysics. 1981. V. 72. P. 203–227.
  20. Cloetingh S.et al. Tectonic Models for the Evolution of Sedimentary Basins. Elsevier. 2015. https://doi.org/10.1016/8978-444-53802-4.00117-2
  21. Galushkin Yu. I. Numerical simulation of permafrost evolution as a part of basin modeling: permafrost in Pliocene-Holocene climate history of Urengoy field in West Siberian basin // Canad. J. Earth Science. 1997. V. 34 (7). P. 935–948.
  22. Galushkin Yu.I. Non-standard Problems in Basin Modeling. Swizeland, Springer Internat. Publ. 2016. 268 p.
  23. Galushkin Yu.I. Thermal history of the permafrost zone in the vicinity of the deep Tyumen SG-6 well, West Siberian Basin // Permafrost and Periglacial Processes. 2023. V. 134 (1). P. 108–121. http://doi.org/10.1002/ppp.2168
  24. Galushkin Yu I., Dubinin E.P. Thermal history and extension of the lithosphere in the Mannar basin and realization its hydrocarbon potential, offshore Sri Lanka // Marine and Petroleum Geology. 2020. V. 119. № 104477. P. 1–18. http://dx.doi.org/10.1016/j.marpetgeo.2020.104477https://doi.org/10.1016/j.marpetgeo.2020.104477
  25. Geological Survey of India, Heat Flow Map of India and Adjoining Regions. Delhi. 1991.
  26. Hantschel Th., Kauerauf A. Fundamentals of Basin and Petroleum Systems Modeling. 2009. Berlin, Heidelberg: Springer Verlag.
  27. Herath P., Gunatilake J., Weerasingh, D. Mohorivicic discontinuity beneath Mannar Basin: a failed rift // J. Geol. Soc. Sri Lanka. 2017. V.18. P. 77–87.
  28. Hofmeister A. Mantle values of thermal conductivity geotherm from phonon lifetimes // Science. 1999. V. 283. P. 1699–1709.
  29. Kularathna E.K.C.W., Pitawala H.M.T.G.A., Senarathne A., Ratnayake A.S. Play distribution and the hydrocarbon potential of the Mannar Basin, Sri Lanka // J.Petrol.Explor.and Production Technology. 2020. № 12. P. 1-19. https://doi.org/10.1007/s13202-020-00902-8
  30. Kumar N., Zeyen H., Singh A.P., Singh B. Lithospheric structure of southern Indian shield and adjoining oceans: integrated modeling of topography, gravity, geoid and heat flow data // Geophys. J. Int. 2013. V. 194. P. 30–44.
  31. McKenzie D., Sclater J.G. The evolution of the Indian oceSenarathne A.an since the late cretaceous // Geophys. J. Roy. Astron. Soc. 1971. V. 25. P. 437–528.
  32. McKenzie D., Jackson J., Priestley K. Thermal structure of oceanic and continental lithosphere // Earth. Planet. Sci. Lett. 2005. V. 233. P. 337–339.
  33. Melnik E.A., Suvorov V.D., Pavlov E.V., Mishenkina Z.R. Seismic and density heterogeneities of lithosphere beneath Siberia: Evidence from the Craton long-range seismic profile // Polar Science. 2015. V. 9. P. 119–129.
  34. Molnar P., Tapponnier P. Cenozoic tectonics of Asia: effects of continental collision // Science. 1975. V. 189. P. 419–426.
  35. Perry H.K.C., Jaupart C., Mareschal J.-C., Shapiro N.M. Upper mantle velocity-temperature conversion and composition determined from seismic refraction and heat flow // J. Geophys. Res. 2006. V. 111. P. B07301. https://doi.org/10.1029/2005JB003921
  36. Rana M.S., Chakraborty Ch., Sharma1 R., Giridhar M. Mannar volcanics — implications for Madagascar breakup. 7th conference and exposition on petroleum geophysics. 2008. Hyderabad. P. 358–363.
  37. Ratnayake A.S., Sampei Y. Preliminary prediction of the geothermal activities in the frontier Mannar Basin, Sri Lanka // J. Geolog. Soc. Sri Lanka. 2015. V. 17. P. 19–29.
  38. Premarathne U. Present day heat flows in the Cauvery Basin, Sri Lanka. In: Proceedings of the 33rd Technical Session of Geological Society of Sri Lanka, Published Online- 24th February 2017. http://www.gss/web.org
  39. Premarathne U., Suzuki1 N., Ratnayake N., Kularathne C. Burial and thermal history modelling of the Mannar basin, offshore Sri Lanka // J. Petrol. Geol. 2016. V. 39 (2). P. 193–214.
  40. Ratnayake A.S., Kularathne Ch.W., Sampei Y. Assessment of hydrocarbon generation potential and thermal maturity of the offshore Mannar Basin, Sri Lanka // J. Petrol. Explor. Product. Technol. 2017. P. 1–13. https://doi.org/10.1007/s13202-017-0408-1
  41. Sclater J.G., Christie P.A.F. Continental stretching: an explanation of the Post-Mid Cretaceous subsidence of the central North Sea basin // J. Geophys. Res. 1980. V. 85 (B7). P. 3711–3739.
  42. Shanker R., Absar A., Bajpai I.P. Heat flow map of India — an update. 21st New Zealand Geothermal Workshop. 2012. P. 157–162.
  43. Schenk O., Tu Ch., Sii L.N., Ong W.Ch., Kularathna Ch. Unlocking the hydrocarbon potential of the Mannar Basin (Sri Lanka) based on new data and new ideas // First Break. 2022. V. 40. P. 75-84.
  44. Touloukian Y.S., Ho C.Y. Physical properties of rocks and minerals. 1981. McGrew-Hill. 548 p.
  45. Ungerer Ph., Burrus L., Doligez B., Chenet P., Bessis F. Basin evolution by integrated two-dimensional modelling of heat transfer, fluid flow, hydrocarbon generation, and migration // AAPG Bull. 1990. V. 74 (3). P. 309–335.
  46. Ungerer Ph. Modeling of petroleum generation and migration / Bordenave M.L. (ed.). Applied Petroleum Geochemistry. 1993. Paris: Technip. P. 397–442.
  47. Welte D.H., Horsfield B., Baker D.R. (eds.). Petroleum and Basin Evolution.1997. Springer-Verlag.
  48. Wood B.J., Yuen D.A. The role of lithospheric phase transitions on sea floor flattering at old ages // Earth Planet. Sci. Letters. 1983. V. 66. P. 303–314.
  49. Wyllie P.J. Magmas and volatile components // Am. Mineral. 1979. V. 64. P. 469–500.
  50. Yamasaki N., Nakada M. The effect of the spinel-garnet phase transition on the formation of rifted sedimentary basins // Geophys. J. Inter. 1997. V. 130. P. 688–692.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The position of the simulated wells: (a) — sle. Dorado-North in the Mannar basin (according to [Premarathne et al., 2016] with changes); (b) — square. Ostaninskaya (black circle) according to [Dobretsov et al., 2013] with changes. 1 — rifts; 2 — effusion-sedimentary complex; 3 — boundaries of the West Siberian syneclise.

Download (656KB)
3. 2. The principle of calculating variations in tectonic subsidence of the basement surface [Galushkin, 2007].

Download (533KB)
4. Fig. 3. Variations in the amplitudes of tectonic subsidence (a), distribution of the reflectivity of vitrinite (b) and rock temperatures (c) with depth in the modern sedimentary section of the SLE. Dorado North of the Mannar basin [Galushkin, Dubinin, 2020]. (a): 1 — change in tectonic subsidence obtained by removing the load of water and sediments from the basement surface; 2 — it is also obtained by calculating changes in the density distribution of rocks in the basement; 3 — thickness of the sedimentary cover; 4 — change in sea depth; (b): solid curve 1 — calculated values of RO (%Ro); 2 and 3 — measurements in sle. Dorado North and Pesalai, respectively; (c): solid curve — calculated values of T(z), crosses — measurements in square meters. Pearl-1.

Download (241KB)
5. 4. Thermal evolution of the sedimentary stratum (a) and lithosphere (b) of the Mannar basin in the area of the SLE. Dorado-North, numerically reconstructed within the framework of the HALO basin modeling system [Galushkin, Dubinin, 2020]. (a): 1 — bottom of sedimentary layers; 2 — isotherms; 3 — soil isolines (%Ro); (b) a: 1, 2 and 3 — heat fluxes through sedimentary surfaces (1), basement (2) and upper mantle (3) (i.e. across the boundary of the MOHO); (b) b: “MOHO" is the base of the crust; “phase transition” is the depth of the spinel peridotite–garnet peridotite phase transition in the mantle; The “base of the lithosphere” is determined by the intersection of the current geotherm with the solidus curve of peridotite with 0.2% H2O [Wyllie, 1979]. Thick straight line segments mark the main stages of the pool stretching.

Download (516KB)
6. Fig. 5. The change in the heat flow at the base of the sedimentary column (a) and the evolution of thermal conditions (b) of the sedimentary column of the Mannar basin in the Dorado-North area, calculated in the model [Premarathne et al., 2016]. (a): 1 is the heat flow specified in the model from [Premarathne et al. al., 2016]; 2 is the flow calculated in [Galushkin and Dubinin, 2020]; (b): continuously sinking lines are the bases of sedimentary layers; lines with signs 20°C, 40°C, 60°C, etc. are isotherms; The bold lines with the signs 0.6%Ro, 1.3%Ro, and 1.6%Ro are the corresponding OSV isolines calculated in the SIGMA-2D model [Premarathne et al., 2016].

Download (279KB)
7. Fig. 6. Thermal history of the sedimentary stratum (a) and lithosphere (b) of the SWR in the area of the SLE. Ostaninskaya-438 — numerical reconstructions in the HALO system. The legends of Fig. 6a and 6b repeat the legends of Fig. 4a and 4b, respectively.

Download (519KB)
8. Fig. 7. Variations in the amplitudes of the tectonic subsidence of the ZSB in the area of the SLE. Ostaninskaya-438 (a) and calculated distributions of heat flow (q, q0), temperature (T, T0) (b). (a): see the legend Fig. 3a; (b): (T0, q0) and (T, q) — temperature and heat flux distributions 3.5 million years ago and in the modern context; ++ — measured temperature values.

Download (329KB)
9. Fig. 8. Calculated distribution of WWS with depth in the modern section of the West Siberian basin in the area of the SLE. Ostaninskaya-438. Curves 1, 3, 4, and 5 correspond to the activity of sill and hydrothermal during 800, 1000, 600, and 0 (absence of sill and hydrothermal) thousand years, respectively; 2 — measured values of WWS; 6 — sill activity for 800 thousand years, but without hydrothermal activity.

Download (174KB)
10. Fig. 9. OSV distributions in modern sedimentary sections of the SLE. Ostaninskaya-438 (a) and Selveykinskaya-2 (Fig. 1b). 1 is the calculated SE distribution; 2 is the measured SE values; 3 is the SE calculated without hydrotherms in the Pleistocene; 4 in Fig. (b) is the SE calculated without the thermal effects of hydrotherms in the Pleistocene and intrusion in the Jurassic.

Download (285KB)
11. Fig. 10. The heat flow set at the base of the sedimentary stratum (a) and the change in the temperature of rocks in the history of the sinking of the SWF in the area of the SLE. Ostaninskaya-438 (b), calculated by paleotemperature modeling in [Isaev et al., 2021]: 1 — isotherms; 2 — geological age of rocks; 3 — isotherms, which, according to [Isaev et al., 2021] correspond to the "oil generation window".

Download (620KB)

Copyright (c) 2025 Russian Academy of Sciences