Application of the seismic interferometry method for studying the earth’s inner core

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

For a more detailed description of the dynamic processes and determination of the properties of the inner core regions, inaccessible to study by traditional methods, the seismic interferometry method, which is based on the technique of cross-correlation analysis of time series for different types of data, was applied in this work. Cross-correlation analyses of the seismic coda window with a start three hours after a strong event and the end 10 hours later are performed for all possible pairs of more than 300 stations and 6 large earthquakes (for each separately) occurring between 2013 and 2024. Synthetic cross-correlograms are calculated for models with different attenuation and an additional boundary in the inner core. Four different types of inner core studies by seismic interferometry were carried out: global, regional, station latitude-dependent, and calendar time-dependent. The stability of the PKIKPPPKIKP wave on global correlograms, the possibility of its observation in areas with high and low density of seismic stations, the dependence of the wave travel time on the angle between the wave direction and the Earth rotation axis, and the stationarity of the wave for the time period from 2013 to 2024 were demonstrated.

Texto integral

Acesso é fechado

Sobre autores

O. Usoltseva

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Autor responsável pela correspondência
Email: kriukova@idg.ras.ru
Rússia, Moscow

V. Ovchinnikov

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: ovtch@idg.ras.ru
Rússia, Moscow

Bibliografia

  1. Краснощеков Д.Н., Овчинников В.М., Усольцева О.А. О скорости поперечных волн в вершине внутреннего ядра Земли // Докл. РАН. 2019. Т. 488. № 4. С. 434–438.
  2. Усольцева О.А., Овчинников В.М., Краснощеков Д.Н. Об особенностях переходной зоны от внешнего к внутреннему ядру Земли из характеристик волн PKIIKP и PKPc-dif // Физика Земли. 2021. № 1. С. 1–14.
  3. Bensen G.D., Ritzwoller M.H., Barmin M.P., Levshin A.L., Lin F., Moschetti M.P., Shapiro N.M., Yang Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements // Geophys. J. Int. 2007. V. 169. P. 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
  4. Boué P., Poli P., Campillo M., Roux P. Reverberations, coda waves and ambient noise: correlations at the global scale and retrieval of the deep phases // Earth Planet.Sci. Lett. 2014. V. 391. P. 137–145. https://doi.org/10.1016/j.epsl.2014.01.047
  5. Campillo M., Paul A. Long-range correlations in the diffuse seismic coda // Science. 2003. V. 299. P. 547–549.
  6. Cormier V. F., Stroujkova A. Waveform search for the innermost inner core // Earth Planet. Sci. Lett. 2005. V. 236. P. 96–105.
  7. Dziewonski A.M., Anderson D.L. Preliminary reference Earth model // Physics of the Earth and Planetary Interiors. 1981. V. 25. № 4. P. 297–356. https://doi.org/10.1016/00319201(81)90046-7
  8. Helffrich G., Mainprice D. Anisotropy at the inner core boundary // Geophys. Res. Lett. 2019. V. 46. № 21. P. 11959–11967.
  9. Ishii M., Dziewonski A.M. The innermost inner core of the earth: evidence for a change in anisotropic behaviour at the radius of about 300 km // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 14026–14030.
  10. Kennett B.L.N., E.R. Engdahl, R. Buland Constraints on seismic velocities in the Earth from travel times // Geophysical Journal International. 1995. V. 122. № 1. P. 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
  11. Lima Costa de T., Tkalčić H., Waszek L. A new probe into the innermost inner core anisotropy via the global coda-correlation wavefield // Journal of Geophysical Research: Solid Earth. 2022. V. 127. P. e2021JB023540. https://doi.org/10.1029/2021JB023540
  12. Ma X., Tkalčić H. Seismic low-velocity equatorial torus in the Earth’s outer core: Evidence from the late–coda correlation wavefield // Sci. Adv. 2024. V. 10. P. eadn5562. https://doi.org/10.1126/sciadv.adn5562
  13. Ma X., Tkalčić H. CCREM: New Reference Earth Model From the Global Coda-Correlation Wavefield // JGR Solid Earth. 2021. https://doi.org/10.1029/2021JB022515
  14. Montagner J.-P., Kennett B.L.N. How to reconcile body-wave and normal-mode reference earth models // Geophysical Journal International. 1996. V. 125. № 1. P. 229–248. https://doi.org/10.1111/j.1365-246X.1996.tb06548.x
  15. Morelli A., Dziewonski A., Woodhouse J. Anisotropy of the inner core inferred from PKIKP travel times // Geoph. Res.Lett. 1986. V. 13. P. 1545–1548.
  16. Moschetti M.P., Ritzwoller M.H., Shapiro N.M. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps // Geochem. Geophys. Geosyst. 2007. V. 8. № 1–10. https://doi.org/10.1029/2007GC001655
  17. Nissen-Meyer T., van Driel M., Stähler S.C., Hosseini K., Hempel S., Auer L., Colombi A., Fournier A. AxiSEM: broadband 3-D seismic wavefields in axisymmetric media // Solid Earth. 2014. V. 5. P. 425–445. https://doi.org/10.5194/se-5-425-2014
  18. Pham T.-S. Advancing correlation methods of earthquake coda in seismic body wave studies. Ph.D.Thesis. 2019. The Australian National University. 205 p.
  19. Song X., Helmberger D.V. Seismic evidence for an inner core transition zone // Science. 1998. V. 282. P 924–927.
  20. Tkalčić H, Phạm T.-S. Wang S. The Earth’s coda correlation wavefield: Rise of the new paradigm and recent advances // Earth-Science Reviews. 2020. V. 208. https://doi.org/10.1016/j.earscirev.2020.103285
  21. Tkalčić H., Pham T.-S. Excitation of the global correlation wavefield by large earthquakes // Geophysical Journal International. 2020. https://doi.org/10.1093/gji/ggaa369
  22. Tkalčić H., Pham T.-S. Shear properties of Earth’s inner core constrained by a detection of J waves in global correlation wavefield // Science. 2018. V. 362. № 6412. P. 329–332. https://doi.org/10.1126/science.aau7649
  23. Wang T., Song X., Xia X.X. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda // Nature geoscience. 2015. V. 8. № 3. P. 224–227. https://doi.org/10.1038/ngeo235
  24. Wang T., Song X. Support for equatorial anisotropy of Earth’s inner-inner core from seismic interferometry at low latitudes // Physics of the Earth and Planetary Interiors. 2018. V. 276. P. 247–257. https://doi.org/10.1016/j.pepi.2017.03.004
  25. Wang W.J.E., Pang Vidale G., Koper K.D., Wang R. Inner core backtracking by seismic waveform change reversals // Nature. 2024. 10.1038/s41586-024-07536-4
  26. Wapenaar K., Draganov D., Snieder R., Campman X., Verdel A. Tutorial on seismic interferometry: Part 1 — Basic principles and applications // Geophysics. 2010. V. 75. № 5. P. 75A195–75A209. https://doi.org/10.1190/1.3457445
  27. Zhan Z., Ni S., Helmberger D.V., Clayton R.W. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise // Geophysical Journal International. 2010. V. 182. № 1. P. 408–420. https://doi.org/10.1111/j.1365-246X.2010.04625.x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of rays of waves I2 (a) and I4 (b) for an epicentral distance of 40°: 1 – inner core, 2 – outer core, 3 – mantle.

Baixar (145KB)
3. Fig. 2. Synthetic correlograms based on the ak135PS models (a), (b), ak135S (c), (d), ak135 without taking into account the attenuation of body waves (d), (e). For sources with a depth of 50 km (left) and 500 km (right). Filtering in the period band of 15–50 s, coda duration of 10000–35000 s. The dotted line is the theoretical hodograph of the I2* wave.

Baixar (1MB)
4. Fig. 3. Correlograms for the ak135PS model, source depth 50 km, filtering in the period band of 15–50 s, coda duration 10000–20000 s (a) and 20000–30000 s (b).

Baixar (775KB)
5. Fig. 4. Correlograms for the ak135PS model, source depth 50 km, coda duration 10000–35000 s. Period ranges 10–30 s (a) and 30–60 s (b).

Baixar (916KB)
6. Fig. 5. Correlograms for test models with IMIC (a) and without IMIC (b).

Baixar (394KB)
7. Fig. 6. Earthquakes 1–3 from Table 1 (red stars) and stations (triangles) used: (a) networks II, IU, G, GE; (b) US Array (USA); (c) F-net (Japan); (d) networks II, IU, G, GE in Europe; (e) networks II, IU, G, GE, HE, FN north of 60° latitude. Red rectangles, and line (a) in the north, delimit the areas of the presented regional studies.

Baixar (538KB)
8. Fig. 7. Fragments of correlograms with wave I2* based on data from various earthquakes: (a) 05/24/2013; (b) 01/22/2024; (c) 03/23/2024.

Baixar (470KB)
9. Fig. 8. Top — distribution of the number of stations depending on the epicentral distance with a step of 0.5° in (a) and (b) and 2° in (c) and (d). Bottom — fragments of correlograms with the I2* wave based on data from the earthquake of 24.05.2013 and stations: (a) US Array; (b) F-net; (c) networks II, IU, G, GE in Europe; (d) networks II, IU, G, GE, HE, FN north of latitude 60°.

Baixar (598KB)
10. Fig. 9. Distribution of the number of stations depending on the epicentral distance with a step of 2.0° (top) and fragments of correlograms with the I2* wave (bottom) based on data from the earthquake of 24.05.2013 for polar stations (a), mid-latitude (b) and equatorial (c).

Baixar (656KB)
11. Fig. 10. Fragments of correlograms with the I2* wave based on data from earthquakes in 2013, 2017, 2021, 2024 and the F-net seismic network.

Baixar (465KB)

Declaração de direitos autorais © Russian academy of sciences, 2025