Применение метода сейсмической интерферометрии для исследования внутреннего ядра земли
- Авторы: Усольцева О.А.1, Овчинников В.М.1
-
Учреждения:
- Институт динамики геосфер имени академика М. А. Садовского РАН
- Выпуск: № 2 (2025)
- Страницы: 3-18
- Раздел: Статьи
- URL: https://journals.eco-vector.com/0002-3337/article/view/686282
- DOI: https://doi.org/10.31857/S0002333725020012
- EDN: https://elibrary.ru/DKPXFC
- ID: 686282
Цитировать
Полный текст



Аннотация
Для более детального описания динамических процессов и определения свойств областей внутреннего ядра, недоступных изучению традиционными методами, в работе применен метод сейсмической интерферометрии, в основе которого лежит техника кросс-корреляционного анализа временных рядов, для различных типов данных. Кросс-корреляционный анализ окна сейсмической коды с началом через три часа после сильного события и концом через 10 часов выполнен для всех возможных пар более чем 300 станций и 6 крупных землетрясений (для каждого в отдельности), произошедших в период с 2013 по 2024 гг. Синтетические кросс-коррелограммы рассчитаны для моделей с различным затуханием и дополнительной границей во внутреннем ядре. Проведено 4 разных типа исследований внутреннего ядра методом сейсмической интерферометрии: глобальное, региональное, зависящее от широты станции и от календарного времени. Продемонстрирована устойчивость волны PKIKPPKIKP на глобальных коррелограммах, возможность ее наблюдения на территориях с высокой и низкой плотностью сейсмических станций, зависимость времени пробега волны от угла между направлением волны и осью вращения Земли, а также стационарность волны для временного периода с 2013 по 2024 гг.
Ключевые слова
Полный текст

Об авторах
О. А. Усольцева
Институт динамики геосфер имени академика М. А. Садовского РАН
Автор, ответственный за переписку.
Email: kriukova@idg.ras.ru
Россия, Москва
В. М. Овчинников
Институт динамики геосфер имени академика М. А. Садовского РАН
Email: ovtch@idg.ras.ru
Россия, Москва
Список литературы
- Краснощеков Д.Н., Овчинников В.М., Усольцева О.А. О скорости поперечных волн в вершине внутреннего ядра Земли // Докл. РАН. 2019. Т. 488. № 4. С. 434–438.
- Усольцева О.А., Овчинников В.М., Краснощеков Д.Н. Об особенностях переходной зоны от внешнего к внутреннему ядру Земли из характеристик волн PKIIKP и PKPc-dif // Физика Земли. 2021. № 1. С. 1–14.
- Bensen G.D., Ritzwoller M.H., Barmin M.P., Levshin A.L., Lin F., Moschetti M.P., Shapiro N.M., Yang Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements // Geophys. J. Int. 2007. V. 169. P. 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
- Boué P., Poli P., Campillo M., Roux P. Reverberations, coda waves and ambient noise: correlations at the global scale and retrieval of the deep phases // Earth Planet.Sci. Lett. 2014. V. 391. P. 137–145. https://doi.org/10.1016/j.epsl.2014.01.047
- Campillo M., Paul A. Long-range correlations in the diffuse seismic coda // Science. 2003. V. 299. P. 547–549.
- Cormier V. F., Stroujkova A. Waveform search for the innermost inner core // Earth Planet. Sci. Lett. 2005. V. 236. P. 96–105.
- Dziewonski A.M., Anderson D.L. Preliminary reference Earth model // Physics of the Earth and Planetary Interiors. 1981. V. 25. № 4. P. 297–356. https://doi.org/10.1016/00319201(81)90046-7
- Helffrich G., Mainprice D. Anisotropy at the inner core boundary // Geophys. Res. Lett. 2019. V. 46. № 21. P. 11959–11967.
- Ishii M., Dziewonski A.M. The innermost inner core of the earth: evidence for a change in anisotropic behaviour at the radius of about 300 km // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 14026–14030.
- Kennett B.L.N., E.R. Engdahl, R. Buland Constraints on seismic velocities in the Earth from travel times // Geophysical Journal International. 1995. V. 122. № 1. P. 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
- Lima Costa de T., Tkalčić H., Waszek L. A new probe into the innermost inner core anisotropy via the global coda-correlation wavefield // Journal of Geophysical Research: Solid Earth. 2022. V. 127. P. e2021JB023540. https://doi.org/10.1029/2021JB023540
- Ma X., Tkalčić H. Seismic low-velocity equatorial torus in the Earth’s outer core: Evidence from the late–coda correlation wavefield // Sci. Adv. 2024. V. 10. P. eadn5562. https://doi.org/10.1126/sciadv.adn5562
- Ma X., Tkalčić H. CCREM: New Reference Earth Model From the Global Coda-Correlation Wavefield // JGR Solid Earth. 2021. https://doi.org/10.1029/2021JB022515
- Montagner J.-P., Kennett B.L.N. How to reconcile body-wave and normal-mode reference earth models // Geophysical Journal International. 1996. V. 125. № 1. P. 229–248. https://doi.org/10.1111/j.1365-246X.1996.tb06548.x
- Morelli A., Dziewonski A., Woodhouse J. Anisotropy of the inner core inferred from PKIKP travel times // Geoph. Res.Lett. 1986. V. 13. P. 1545–1548.
- Moschetti M.P., Ritzwoller M.H., Shapiro N.M. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps // Geochem. Geophys. Geosyst. 2007. V. 8. № 1–10. https://doi.org/10.1029/2007GC001655
- Nissen-Meyer T., van Driel M., Stähler S.C., Hosseini K., Hempel S., Auer L., Colombi A., Fournier A. AxiSEM: broadband 3-D seismic wavefields in axisymmetric media // Solid Earth. 2014. V. 5. P. 425–445. https://doi.org/10.5194/se-5-425-2014
- Pham T.-S. Advancing correlation methods of earthquake coda in seismic body wave studies. Ph.D.Thesis. 2019. The Australian National University. 205 p.
- Song X., Helmberger D.V. Seismic evidence for an inner core transition zone // Science. 1998. V. 282. P 924–927.
- Tkalčić H, Phạm T.-S. Wang S. The Earth’s coda correlation wavefield: Rise of the new paradigm and recent advances // Earth-Science Reviews. 2020. V. 208. https://doi.org/10.1016/j.earscirev.2020.103285
- Tkalčić H., Pham T.-S. Excitation of the global correlation wavefield by large earthquakes // Geophysical Journal International. 2020. https://doi.org/10.1093/gji/ggaa369
- Tkalčić H., Pham T.-S. Shear properties of Earth’s inner core constrained by a detection of J waves in global correlation wavefield // Science. 2018. V. 362. № 6412. P. 329–332. https://doi.org/10.1126/science.aau7649
- Wang T., Song X., Xia X.X. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda // Nature geoscience. 2015. V. 8. № 3. P. 224–227. https://doi.org/10.1038/ngeo235
- Wang T., Song X. Support for equatorial anisotropy of Earth’s inner-inner core from seismic interferometry at low latitudes // Physics of the Earth and Planetary Interiors. 2018. V. 276. P. 247–257. https://doi.org/10.1016/j.pepi.2017.03.004
- Wang W.J.E., Pang Vidale G., Koper K.D., Wang R. Inner core backtracking by seismic waveform change reversals // Nature. 2024. 10.1038/s41586-024-07536-4
- Wapenaar K., Draganov D., Snieder R., Campman X., Verdel A. Tutorial on seismic interferometry: Part 1 — Basic principles and applications // Geophysics. 2010. V. 75. № 5. P. 75A195–75A209. https://doi.org/10.1190/1.3457445
- Zhan Z., Ni S., Helmberger D.V., Clayton R.W. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise // Geophysical Journal International. 2010. V. 182. № 1. P. 408–420. https://doi.org/10.1111/j.1365-246X.2010.04625.x
Дополнительные файлы
