Instanton representation of foreshoсk—aftershock sequences

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Descriptions of the processes of foreshock and aftershock activations are of great significance in seismology, both for practical and theoretical reasons. An analogy of mathematical expressions describing the origin of the direct and inverse Omori–Utsu laws has been established empirically. Investigations of the generalized vicinity of a large earthquake (GVLE) have revealed an even closer analogy between the properties of foreshocks and aftershocks. This similarity also applies to the characteristics of the activation process, in particular, anomalous changes in the slope of the repeatability plot. It is proposed in this paper to use kinetic equations for the unifying model of the entire foreshock-aftershock process, the equations having solutions in the form of dependencies with explicit maxima, localized in time and called instantons (by analogy with solitons–localized waves). A clear pattern of an instanton solution is a plot of the time derivative of the logistic dependence describing the transition process. The speed of such a process first increases significantly, reaches a maximum, and then asymptotically decreases to zero.

The aim of the work is to demonstrate the efficiency of using the instanton model, which generalizes the model of self–developing processes (SDP), but does not provide for the development of physically unrealistic singularity which is a pattern usually simulating an explosive growth in the number of foreshocks and aftershocks in the vicinity of the main event. A comparison of the new model with empirical data is performed by the example of earthquakes in the southern part of Sakhalin Island in 2003–2023.This zone is the most equipped with facilities for seismic events registration. The satisfactory correspondence between theoretical and empirical temporal dependences is shown both for the GVLE built for the territory within (44.5°–50.5° N., 141.5°–143.5° E.) and for individual strong earthquakes on Sakhalin.

Full Text

Restricted Access

About the authors

L. M. Bogomolov

Institute of Marine Geology and Geophysics, FEB RAS

Author for correspondence.
Email: bleom@mail.ru
Russian Federation, Yuzhno-Sakhalinsk

M. V. Rodkin

Institute of Marine Geology and Geophysics, FEB RAS; Institute of earthquake prediction theory and mathematical geophysics, RAS

Email: rodkin@mitp.ru
Russian Federation, Yuzhno-Sakhalinsk; Moscow

V. N. Sychev

Institute of Marine Geology and Geophysics, FEB RAS

Email: bleom@mail.ru
Russian Federation, Yuzhno-Sakhalinsk

References

  1. Айвазян С.А., Мхитарян В.С. Прикладная статистика. Основы эконометрики (в 2-х т.). М.: Юнити-Дана. 2001. 1088 с.
  2. Вайнштейн А.И., Захаров В.И., Новиков В.А., Шифман М.А. Инстантонная азбука // УФН. 1982. Т. 136. № 4. С. 553–591.
  3. Воейкова О.А., Несмеянов С.А., Серебрякова Л.И. Неотектоника и активные разломы Сахалина. М.: Наука. 2007. 187 с.
  4. Гольдин С.В. Физика “живой” Земли. Проблемы геофизики XXI века / Николаев А. В. (отв. ред.). М.: Наука. 2003. C. 17–36.
  5. Гульельми А.В., Завьялов А.Д., Зотов О.Д., Клайн Б.И. Неполные симметричные триады тектонических землетрясений. Тезисы докладов 6-й Всероссийской тектонофизической конференции. М.: ИФЗ РАН. 2024. С. 49.
  6. Кочарян Г.Г. Геомеханика разломов. М.: ГЕОС. 2016. 424 с.
  7. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. М.: Дело. 2004. 576 с.
  8. Малинецкий Г.Г., Потапов А.Б. Современные проблемы нелинейной динамики (2-е изд., испр. и доп). М.: Эдиториал УРСС. 2002. 358 с.
  9. Малышев А.И., Тихонов И.Н. Закономерности динамики форшок-афтершоковых последовательностей в районе Южных Курильских островов // Докл. АН СССР. 1991. Т. 319. № 1. С. 134–138.
  10. Малышев А.И., Тихонов И.Н. Нелинейные закономерности развития сейсмического процесса во времени // Физика земли. 2007. № 6. С. 37−51.
  11. Родкин М.В. Сейсмический режим в обобщенной окрестности сильного землетрясения // Вулканология и сейсмология. 2008. № 6. С. 1–12.
  12. Родкин М.В. Типовая фор- и афтершоковая аномалия — эмпирика, интерпретация // Вулканология и сейсмология. 2020.№ 1. С. 64–76.
  13. Смирнов В.Б., Пономарев А.В. Физика переходных режимов сейсмичности. М.: РАН. 2020. 412 с.
  14. Соболев Г.А. Основы прогноза землетрясений. М.: Наука. 1993. 312 с.
  15. Содержание ежегодников — “Землетрясения России” (gsras.ru) URL: http://www.gsras.ru/zr/contents.html (дата обращения 10.09.2024).
  16. Тихонов И.Н., Василенко Н.Ф., Золотухин Д.Е., Ивельская Т.Н., Поплавский А.А., Прытков А.С., Спирин А.И. Симуширские землетрясения и цунами 15 ноября 2006 года и 13 января 2007 года // Тихоокеанская геология. 2008. Т. 27. № 1. С. 3–17.
  17. Тихонов И.Н., Михайлов В.И., Малышев А.И. Моделирование последовательностей землетрясений юга Сахалина, предваряющих сильные толчки, с целью краткосрочного прогноза времени их возникновения // Тихоокеанская геология. 2017. Т. 36. № 1. С. 5–14
  18. Faraoni V. Lagrangian formulation of Omori’s law and analogy with the cosmic Big Rip. // Eur. Phys. J. C. 2020.V. 80. № 5. P. 445–450. https://doi.org/10.1140/epjc/s10052-020-8019-2
  19. Malyshev A.I., Tikhonov I.N. Nonlinear regular features in the development of the seismic process in time // Izv. Physics of the Solid Earth. 2007. V. 43. № 6. P. 476–489.
  20. Rodkin M.V., Tikhonov I.N. The typical seismic behavior in the vicinity of a large earthquake // Physics and Chemistry of the Earth. 2016.V. 95. P. 73‒84.
  21. Rodkin M., Patonin A., Shikhova N., Ponomarev A., Smirnov V. Comparison of fore- and aftershock activity in the generalized vicinity of large earthquakes, rock bursts and acoustic emission events: 7th General Assembly (GA) of the European Seismological Commission, 19–24 September 2021. Session 21: Physics of earthquake preparation process: from laboratory experiments to earthquake forecast. № 493.
  22. Tikhonov I.N., Kim Ch.U. Confirmed prediction of the 2 August 2007 Mw 6.2 Nevelsk earthquake (Sakhalin Island, Russia) // Tectonophysics. 2010. V. 485. P. 85–93.
  23. Utsu T. A statistical study on the occurrence of aftershocks // Geophys. Mag. 1961. V. 30. P. 521–605.
  24. Varnes D.J. Predicting earthquakes by analyzing accelerating precursory seismic activity //Pure and Applied Geophysics. 1989. V. 130(4). P. 661–686. https://doi.org/10.1007/bf00881603
  25. Voight B. A relation to describe rate-dependent material failure // Science. 1989.V. 243. № 4888. P. 200–203. https://doi.org/10.1126/science.243.4888.200
  26. Zavyalov A.D., Guglielmi A.V., Zotov O.D. Three problems in aftershock physics // J. Volcanol. Seismol. 2020. V. 14. P. 341–352. https://doi.org/10.1134/S0742046320050073
  27. Zavyalov A., Zotov O., Guglielmi A., Klain B. On the Omori Law in the Physics of Earthquakes //Appl. Sci. 2022. V. 12. P. 9965–9982. https://doi.org/10.3390/app12199965
  28. Zelenin E.A, Bachmanov D.M., Garipova S.T., Trifonov V.G., Kozhurin A.I. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset // Earth System Science Data. 2022. V. 14. P. 4489–4503.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Accumulation rate of the number of events per month n, before the Simushir earthquake of November 15, 2006, Ms = 7.9–8.2 (a), and the Gornozavodskoye earthquake of August 17, 2006, M = 5.6 (b), based on the materials of [Tikhonov et al., 2008; Tikhonov, Kim, 2010]. Regression lines with singularity are drawn according to the authors’ works.

Download (196KB)
3. Fig. 2. Time dependence of the daily number of foreshocks and aftershocks in the EOZ for the ISC catalog based on the materials of [Rodkin, 2020]. The points correspond to the average values ​​for successive groups of earthquakes, explanations in the text.

Download (113KB)
4. Fig. 3. Characteristic time dependences of solutions of kinetic equation (13) for s = 2 with normalization to the maximum activity value: (a) f = a = 1, Af = Aa = 1; (b) f = 0.8, a = 0.2, Af = 1, Aa = 4; (c) f = 6, a = 0.15, Af = 1, Aa = 40; (d) f = 0.4, a = 1.6, Af = 4, Aa = 1; (e) f = 1, a = 0.01, Af = 1, Aa = 100. In cases (a) and (b), marker h indicates the graphs of the dependence n(t) = K/(c + t)p, the values ​​of K, c, p are given in the text. The intervals of overlapping graphs are marked with a strip.

Download (260KB)
5. Fig. 4. Characteristic time dependences of solutions of kinetic equation (19) with normalization to the maximum activity value: (a) p = 0.6, tm = 8; (b) p = 0.6, tm = 2; (c) p = 1.5, tm = 8. Graphs in panel (a): marker ptm is solution (19), marker fa is the compared dependence (15) with parameters: f = 0.72, a = 0.12, Af = 1, Aa = 6.

Download (141KB)
6. Fig. 5. Location of seismic stations of the Sakhalin branch of the Federal Research Center of Geological Surveys of the Russian Academy of Sciences and earthquake epicenters in the southern part of Sakhalin Island for the period 2003–2023. Black lines show the largest fault zones: 1 — West Sakhalin, 2 — Central Sakhalin, and regional faults: 3 — Susunai, 4 — East Sakhalin (Hokkaido–Sakhalin), according to [Voyeikova et al., 2007; Zelenin et al., 2022].

Download (434KB)
7. Fig. 6. Time dependence of the daily number of foreshocks and aftershocks in the EOE for the catalogue of the south of Sakhalin Island and its approximation (solid line) using the instanton solution (15) with parameters (a) f = 0.4, a = 0.4, nm = 300, Af = Aa = 1; (b) the same dependence and its approximation on a logarithmic scale on an interval of ± 10 days from the main event.

Download (141KB)
8. Fig. 7. Seismic activity before and after the earthquakes: (a) Nevelskoy, 02.08.2007, Mw = 6.2; (b) Gornozavodskoy, 17.08.2006, Mw = 5.9 and their approximations using instanton solutions (15). Approximation parameters: f = 0.4, a = 0.1, nm = 87, Af = Aa = 1 (a); f = 0.37, a = 0.19, nm = 86, Af = Aa = 1 (b).

Download (109KB)

Copyright (c) 2025 Russian academy of sciences