Emergence of a zone of disturbed rock in the vicinity of dynamic slip along a tectonic fault

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article presents results of 2D simulations of formation of a zone of disturbed rock during the development of a dynamic shear along a horizontal tectonic fault. Different sliding regimes are studied: the sub-Rayleigh one (the rupture propagation velocity Vr does not exceed the velocity of Rayleigh wave in the medium) and the supershear one (the Vr value is higher than the velocity of transverse waves). Contributions of tear and shear mechanisms to the process of emerging zone of disturbed rock in the vicinity of a fault at different depths is considered. The degree of alteration in physical and mechanical properties of rock at different distances from the fault is assessed. It is shown that at large depths lithostatic stresses completely suppress rupture, and rock destruction occurs solely due to shear deformation. At shallow depths, the tear mechanism becomes predominant. The stress release associated with emerging of tensile cracks leads to an abrupt decrease of the zone of shear fracture. This zone is localized only in the immediate vicinity of the rupture plane. An increase in the tearing strength leads to an increase in the size of the shear fracture zone. In supershear ruptures, the fracture zone can have a complex, non-simple character. A change in the propagation velocity of longitudinal waves Cp by more than 15–20% occurs only in the immediate vicinity of the slip plane at a distance of 10–20 m. At large distances, the degree of change in the value does not exceed 10%. At shallow depths, there may be tensile cracks that propagate over significant distances from the slip plane.

全文:

受限制的访问

作者简介

А. Budkov

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: gevorgkidg@mail.ru
俄罗斯联邦, Moscow

G. Kocharyan

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: gevorgkidg@mail.ru
俄罗斯联邦, Moscow

Z. Sharafiev

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: gevorgkidg@mail.ru
俄罗斯联邦, Moscow

参考

  1. Архипов В.Н., Борисов В.А., Будков А.М. и др. Механическое действие ядерного взрыва. М.: Физматлит. 2002. 550 c.
  2. Бернштейн В.А. Механогидролитические процессы и прочность твердых тел. Л.: Наука. 1987. 320 с.
  3. Будков А.М., Кишкина С.Б. Один из сценариев распространения “быстрых” разрывов при землетрясениях // Физическая мезомеханика 2024. Т. 27. № 2. С. 102–111. https://doi.org/10.55652/1683-805X_2024_27_2_102-111
  4. Будков А.М., Кишкина С.Б., Кочарян Г.Г. Моделирование сверхсдвигового режима распространения разрыва по разлому с гетерогенной поверхностью // Физика Земли. 2022. № 4. С. 135–150. https://doi.org/10.31857/S0002333722040019
  5. Будков А.М., Кочарян Г.Г., Кишкина С.Б. Оценка изменения проницаемости массива горных пород в окрестности подземного взрыва по экспериментальным данным и результатам численного моделирования // Физико-технические проблемы разработки полезных ископаемых. 2023. № 1. С. 12–21.
  6. Будков А.М., Кочарян Г.Г. О влиянии разрушения отрывом на формирование зоны нарушенного материала в окрестности динамического сдвига по разлому в кристаллическом массиве горных пород // Динамические процессы в геосферах. 2024. Т. 16. № 2. С. 1–10. https://doi.org/10.26006/29490995_2024_16_2_1
  7. Качанов Л.М. Основы теории пластичности. М.: Наука. 1969. 420 с.
  8. Костров Б.В. Механика очага тектонического землетрясения. М. 1975. 176 с.
  9. Кочарян Г.Г. Геомеханика разломов. М.: ГЕОС. 2016. 424 с.
  10. Кочарян Г.Г. Возникновение и развитие процессов скольжения в зонах континентальных разломов под действием природных и техногенных факторов. Обзор современного состояния вопроса // Физика Земли. 2021. № 4. С. 3–41. https://doi.org/10.31857/S0002333721040062
  11. Кочарян Г. Г., Будков А.М., Кишкина С.Б. Влияние структуры зоны скольжения разлома на скорость распространения разрыва при землетрясении // Физическая мезомеханика. 2022. Т. 25. № 4. С. 84–93. https://doi.org/10.55652/1683-805X_2022_25_4_84
  12. Леонов М.Г. Морфоструктура внутриконтинентальных осадочных бассейнов и фрактальная геометрия // Динамические процессы в геосферах. 2022. Т. 14. № 1. С. 3–16. https://doi.org/10.26006/22228535_2022_14_1_3
  13. Леонов М.Г., Морозов Ю.А., Пржиялговский Е.С., Рыбин А.К., Бакеев Р.А., Лаврушина Е.В., Стефанов Ю.П. Тектоническая эволюция системы “фундамент–чехол” и морфоструктурная дифференциация осадочных бассейнов // Геотектоника. 2020. № 2. С. 3–17. https://doi.org/10.31857/S0016853X20020083
  14. Мелош Г. Образование ударных кратеров. М.: Мир. 1994. 335 c.
  15. Морозов В.Н., Татаринов В.Н., Маневич А.И. Моделирование напряженно-деформированного состояния эпицентральной зоны сильного землетрясения в Турции (Измит, 1999 г., M 7.4) // Вулканология и сейсмология. 2020. № 2. С. 43‒54. https://doi.org/10.31857/S0203030620020042
  16. Стефанов Ю.П., Бакеев Р.А. Формирование цветковых структур нарушений в слое геосреды при разрывном горизонтальном сдвиге основания// Физика Земли. 2015. № 4. С. 81–93. https://doi.org/10.7868/S0002333715040110
  17. Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука. СО АН СССР. 1983. 110 с.
  18. Ampuero J.P., Mao X. Upper limit on damage zone thickness controlled by seismogenic depth // Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture. 2017. V. 227. P. 243–253. https://doi.org/10.1002/9781119156895.ch13
  19. Andrews D.J. Rupture Propagation with Finite Stress in Antiplane Strain // J. Geophys. Res. 1976. V. 81. P. 3575–3582. https://doi.org/10.1029/JB081i020p03575
  20. Andrews D.J. Rupture dynamics with energy loss outside the slip zone // J. Geophys. Res.-Sol. Ea. 2005. V. 110. P. 1–14. https://doi.org/10.1029/2004JB003191
  21. Collettini C., Carpenter B.M., Viti C., Cruciani F., Mollto S., Tesei T., Trippetta F., Valoroso L., Chiaraluce L. Fault structure and slip localization in carbon-ate bearing normal faults: an example from the Northern Apennines of Italy // Journal of Structural Geology. 2014. V. 67. P. 154–166. https://doi.org/10 .1016 /j.jsg.2014.07.017
  22. Drucker D.C., Prager W. Soil mechanics and plastic analysis or limit design // Q. Appl. Math. 1952. V. 10. P. 157–165. https://doi.org/10.1090/qam/48291
  23. Ida Y. Cohesive force across tip of a longitudinal-shear crack and Griffiths specific surface-energy // J. Geophys. Res. 1972. V. 77. P. 3796–3805. https://doi.org/10.1029/JB077i020p03796
  24. Kostrov B.V., Das Sh. Principles of Earthquake Source Mechanics. Cambridge Univ. Press. 2005. 286 p.
  25. Kolyukhin D., Torabi A. Statistical analysis of the relationships between faults attributes // J. Geophys. Res. 2012. V. 117. P. B05406. https://doi.org/10.1029/2011JB008880
  26. Lapusta N.E., Dunham J.-P., Avouac M., Denolle Y. et al. Modeling Earthquake Source Processes: from Tectonics to Dynamic Rupture. Report to National Science Foundation. http://www.seismolab.caltech.edu/pdf/MESP_White_Paper_Main_Text_8_March_2019.pdf
  27. Moore D.E., Lockner D.A. The role of microcracking in shear-fracture propagation in granite // J. Struct. Geol. 1995. V. 17. № 1. P. 95–114.
  28. Okubo K., Bhat H. S., Rougier E., Marty S., Schubnel A., Lei Z., Knight E. E., Klinger Y. Dynamics, radiation and overall energy budget of earthquake rupture with coseismic off fault damage // J. Geophys. Res.-Sol. Ea. 2019. V. 124. P. 11771–11801. https://doi.org/10.1029/2019jb017304
  29. Perrin C., Manighetti I., Ampuero J.P., Cappa F., Gaudemer Y. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth // J. Geophys. Res. 2016. V. 121. № 5. P. 3666–3685.
  30. Poliakov A. N. B., Dmowska R., Rice J. R. Dynamic shear rupture interactions with fault bends and off-axis secondary faulting // J. Geophys. Res. -Sol. Ea. 2002. V. 107. № B11. ESE-6. https://doi.org/10.1029/2001JB000572
  31. Preuss S., Ampuero J.P., Gerya T., van Dinther Y. Characteristics of earthquake ruptures and dynamic off-fault deformation on propagating faults // Solid Earth. 2020. V. 11. P. 1333–1360. https://doi.org/10.5194/se-11-1333-2020
  32. Rice J.R., Sammis C.G., Parsons R. Off-fault secondary failure induced by a dynamic slip pulse // B. Seismol. Soc. Am. 2005. V. 95. P. 109–134. https://doi.org/10.1785/0120030166
  33. Scholz C.H. The mechanics of earthquakes and faulting. Cambridge: Cambridge University Press. 2019. 512 p. https://doi.org/10.1017/9781316681473
  34. Templeton E.L., Rice J.R. Off-fault plasticity and earthquake rupture dynamics: 1. Dry materials or neglect of fluid pressure changes // J. Geophys. Res.-Sol. Ea. 2008. V. 113. P. 1–19. https://doi.org/10.1029/2007JB005529
  35. Torabi A., Rudnicki J., Alaei B., Buscarnera G. Envisioning faults beyond the framework of fracture mechanics // Earth-Science Reviews. 2023. V. 238. P. 104358. https://doi.org/10.1016/j.earscirev.2023.104358
  36. Xiao L., Nadia L., Ares J.R. Analysis of supershear transition regimes in rupture experiments: The effect of nucleation conditions and friction parameters // Geophysical Journal International. 2009. V. 177. № 2. P. 717–732. https://doi.org/10.1111/j.1365-246X.2009.04091

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Statement of the problem: 1 — fault plane; 2 — plane of 2D calculation of the destruction process; 3 — nucleation zone.

下载 (242KB)
3. Fig. 2. The relationship between the strength measure S, peak τu and residual τf frictional strength of the fracture, and the level of background stresses τ0.

下载 (94KB)
4. Fig. 3. Features of the relationship between the stress field parameters and the rock strength at different depths for the adopted problem statement: (a) — dependences on the depth of the square root of the second invariant of the lithostatic stress tensor and the shear strength of the rock; (b) — dependences on the depth of the diagonal components of the lithostatic stress tensor in the principal axes. The dotted line shows the rock tensile strength. The calculations were carried out for the case of a background shear stress field τ0 = 73.8 MPa (according to the work [Budkov, Kocharyan, 2024]).

下载 (173KB)
5. Fig. 4. Hodographs of the rupture arrival at different depths. Parameter S = 2.0.

下载 (181KB)
6. Fig. 5. Hodographs of the rupture arrival at a depth of 9 km for ruptures with different values ​​of the parameter S.

下载 (165KB)
7. Fig. 6. Hodographs of the rupture arrival at different depths.

下载 (480KB)
8. Fig. 7. Configuration of the rock failure zone in several calculation variants (vertical section). The shear failure zone is shown in black, the zone of combined failure by rupture and shear is shown in brown, and the failure zones by rupture are shown in green and blue. The abscissa axis is the reduced distance along the fault from the initiation point; the ordinate axis y is the lateral distance from the fault plane in meters. In calculation variants (a)–(d), S = 2; reduced time . In variant (e), S = 0.7; . Fault depth: (a), (d) — yf = 6 km; (b), (d) — yf = 7 km; (c), (e) — yf = 9 km. Variants in Fig. (d) and (d) — calculation without failure by rupture.

下载 (400KB)
9. Fig. 8. Spatial distribution of the relative change in the velocity of longitudinal waves in the massif (vertical section): (a) S = 2; reduced time , fault depth yf = 6 km; (b) S = 0.7; ; yf = 9 km. The length along the fault (abscissa axis) is shown in reduced units. The lateral width (ordinate axis) is shown in meters. The color scale is the value .

下载 (485KB)

版权所有 © Russian academy of sciences, 2025