Radial Anisotropy of the Upper Mantle of Southeastern Asia
- Авторлар: Filippova A.I.1, Solovey О.А.2
-
Мекемелер:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
- Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences
- Шығарылым: № 3 (2025)
- Беттер: 143-158
- Бөлім: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/688399
- DOI: https://doi.org/10.31857/S0002333725030117
- EDN: https://elibrary.ru/FFVNFM
- ID: 688399
Дәйексөз келтіру
Аннотация
Radial anisotropy of S-waves is observed as a difference between SV- and SH-wave velocities polarized in vertical and horizontal planes and obtained by inverting dispersion curves of Rayleigh and Love waves, respectively. Unlike isotropic models, the currently existing distributions of S-wave velocities that take radial anisotropy into account significantly contradict each other. One of the reasons for such discrepancies is that, as a rule, different data sets (paths) for Rayleigh and Love waves are used to calculate a radial anisotropy coefficient. This leads to the fact that the reconstructed velocity sections of SV- and SH-waves are smoothed over areas of different shapes and sizes. To eliminate this effect, an approach in which initial data contain only Rayleigh and Love wave dispersion curves along the same paths at the same periods is offered. Then, standard procedures of surface wave tomography and inversion of local surface wave velocities into S-wave velocity sections are implemented. Using such an approach, a distribution of radial anisotropy coefficient (α (VSH – VSV) / Vav, where Vav = (VSH + VSV) / 2) in the upper mantle of southeastern Asia to the depth of 300 km within 70°–145° E and 20°–40° N is obtained. It has been shown that at the depths of 50–70 km, maxima of α-coefficient are confined to areas with reduced SV-wave velocities. In addition, at 50 km, the maxima of α values tend to areas with maximum rates of horizontal displacements according to GPS data (relative to stable Eurasia). It has been revealed that areas with reliably established negative anisotropy (α less than –1%), i.e. in which VSV > VSH, are confined to the boundaries of lithospheric plates.
Толық мәтін

Авторлар туралы
A. Filippova
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: aleirk@mail.ru
Ресей, Troitsk
О. Solovey
Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences
Email: aleirk@mail.ru
Ресей, Irkutsk
Әдебиет тізімі
- Левшин А.Л., Яновская Т.Б., Ландер А.В., Букчин Б.Г., Бармин М.П., Ратникова Л.И., Итс Е.Н. Поверхностные сейсмические волны в горизонтально-неоднородной Земле. М.: Наука. 1986. 278 с.
- Середкина А.И. Поверхностно-волновая томография Арктики по данным дисперсии групповых скоростей волн Рэлея и Лява // Физика Земли. 2019. № 3. C. 58–70. https://doi.org/10.31857/S0002-33372019358-70
- Середкина А.И., Кожевников В.М., Соловей О.А. Дисперсия групповых скоростей волн Рэлея и Лява и анизотропные свойства мантии азиатского континента // Геология и геофизика. 2018. Т. 59. № 4. С. 553–565. https://doi:10/15372/GiG20180410
- Середкина А.И., Соловей О.А. Анизотропные свойства верхней мантии Центральной Азии по данным дисперсии групповых скоростей волн Рэлея и Лява // Геодинамика и тектонофизика. 2018. Т. 9. № 2. С. 413–426. https://doi.org/10.5800/GT-2018-9-2-0354
- Филиппова А.И., Соловей О.А. Поверхностно-волновая томография Юго-Восточной Азии // Геофизические процессы и биосфера. 2021a. Т. 20. № 1. С. 50–60. https://doi.org/10.21455/GPB2021.1-5
- Филиппова А.И., Соловей О.А. Глубинное строение Юго-Восточной Азии по данным групповых скоростей волн Рэлея: 3D изотропная модель распределения скоростей S-волн в верхней мантии // Геотектоника. 2021б. № 4. С. 104–116. https://doi.org/10.31857/S0016853X21040068
- Филиппова А.И., Соловей О.А. Поверхностно-волновая томография Кольского полуострова и сопредельных территорий по данным групповых скоростей волн Рэлея и Лява // Докл. РАН. Науки о Земле. 2022. Т. 504. № 2. С. 177–182. https://doi.org/10.31857/S2686739722060068
- Яновская Т.Б. Развитие способов решения задач поверхностно-волновой томографии на основе метода Бэйкуса-Гильберта // Вычислительная сейсмология. 2001. Вып. 32. С. 11–26.
- Яновская Т.Б. Поверхностно-волновая томография в сейсмологических исследованиях. СПб.: Наука. 2015. 167 с.
- Яновская Т.Б., Кожевников В.М. Анизотропия верхней мантии Азиатского континента по групповым скоростям волн Рэлея и Лява // Геология и геофизика. 2006. Т. 47. С. 622–629.
- Яновская Т.Б., Лыскова Е.Л., Королева Т.Ю. Радиальная анизотропия верхней мантии Европы по данным поверхностных волн // Физика Земли. 2019. № 2. С. 3–14. https://doi.org/10.31857/S0002-3337201923-14
- Anderson D.L. 1961. Elastic wave propagation in layered anisotropic media // Journal of Geophysical Research. 1961. V. 66. № 9. P. 2953–2963. https://doi.org/10.1029/JZ066i009p02953
- Auer L., Boschi L., Becker T., Nissen-Meyer T., Giardini D. Savani: a variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets // Journal of Geophysical Research. 2014. V. 119 (4). P. 3006–3034. https://doi.org/10.1002/2013JB010773
- Babuska V., Cara M. Seismic anisotropy in the Earth // Springer. Dordrecht. 1991. 219 p. https://doi.org/10.1007/978-94-011-3600-6
- Backus G., Gilbert F. Numerical application of formalism for geophysical inverse problems // Geophys. J. Roy. Astron. Soc. 1967. V. 13. P. 247–276. https://doi.org/10.1111/j.1365-246X.1967.tb02159.x
- Backus G., Gilbert F. The resolving power of gross Earth data // Geophys. J. Roy. Astron. Soc. 1968. V. 16. P. 169–205. https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
- Behera L., Sain K. Crustal velocity structure of the Indian Shield from deep seismic sounding and receiver function studies // J. Geol. Soc. India. 2006. V. 68. P. 989–992.
- Bird P. An updated digital model of plate boundaries // Geochem. Geophys. Geosyst. 2003. V. 4. №3. P. 1027. 10.1029/2001GC000252' target='_blank'>https://doi: 10.1029/2001GC000252
- Calais E., Dong L., Wang M., Shen Z., Vergnolle M. Continental deformation in Asia from a combined GPS solution // Geophys. Res. Lett. 2006. V. 33. L24319. 10.1029/2006GL028433' target='_blank'>https://doi: 10.1029/2006GL028433
- Chang S.-J., van der Lee S., Matzel E., Bedle H. Radial anisotropy along the Tethyan margin // Geophys. J. Int. 2010. V. 182. №2. P. 1013–1024. https://doi: 10.1111/j.1365-246X.2010.04662.x
- Chang S.-J., Ferreira A.M., Ritsema, Heijst H.J., Woodhous J.H. Globally radially anisotropic mantle structure from multiple datasets: A review, current challenges, and outlook // Tectonophysics. 2014. V. 617. P. 1–19. http://dx.doi.org/10.1016/j.tecto.2014.01.033
- Chang S.-J., Ferreira A.M., Ritsema J., Heijst H.J., Woodhouse J.H. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations // J. geophys. Res. 2015. V. 120. № 6. P. 4278–4300. https://doi.org/10.1002/2014JB011824
- Chen Y., Badal J., Zhang Z. Radial anisotropy in the crust and upper mantle beneath the Qinghai-Tibet Plateau and surrounding regions // J. Asian Earth Sci. 2009. V. 36. № 4–5. P. 289–302. https://doi.org/10.1016/j.jseaes.2009.06.011
- Debayle E., Ricard Y. A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements // J. Geophys. Res. 2012. V. 117. B10308. https://doi.org/10.1029/2012JB009288
- Dziewonski A.M., Anderson D.L. Preliminary Reference Earth Model // Phys. Earth Planet. Inter. 1981. V. 25. №4. P. 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
- Eksröm G. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s // Geophys. J. Int. 2011. V. 187. P. 1668–1686. https:// doi: 10.1111/j.1365-246X.2011.05225.x
- ETOPO 2022: 15 Arc-Second Global Relief Model, 2024. 10.25921/fd45-gt74' target='_blank'>https://doi: 10.25921/fd45-gt74. Available from https://www.ncei.noaa.gov/products/etopo-global-relief-model. Last accessed 15 February 2024.
- Fouch M., Rondenay S. Seismic anisotropy beneath stable continental interiors // Phys Earth Planet Inter. 2006. V. 158 (2–4). P. 292–320. https://doi.org/10.1016/j.pepi.2006.03.024
- French S., Romanowicz B. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography // Geophys. J. Int. 2014. V. 199 (3). P. 1303–132. https://doi.org/10.1093/gji/ggu334
- Fu Y. V., Gao Y., Li A., Shi Y. Lithospheric shear wave velocity and radial anisotropy beneath the northern part of North China from surface wave dispersion analysis // Geochem. Geophys. Geosyst. 2015. V. 16. P. 2619–2636. 10.1002/2015GC005825' target='_blank'>https://doi: 10.1002/2015GC005825
- Jung H. Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: A review // Geosciences Journal. 2017. V. 21. P. 985–1011. https://doi.org/10.1007/s12303-017-0045-1
- Karato S., Jung H., Katayama I., Skemer P. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies // Annual Review of Earth and Planetary Sciences. 2008. V. 36 P. 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120
- Laske G., Masters G., Ma Z., Pasyanos M. Update on CRUST1.0 — A 1-degree global model of Earth’s crust // Geophys. Res. Abstracts. 15 Abstract EGU 2013–2658. 2013.
- Li S., Mooney W.D., Fan J. Crustal structure of mainland China from deep seismic sounding data // Tectonophysics. 2006. V. 420. P. 239–252. doi: 10.1016/j.tecto.2006.01.026
- Li L., Li A., Murphy M.A., Fu Y.V. Radial anisotropy beneath northeast Tibet, implications for lithosphere deformation at a restraining bend in the Kunlun fault and its vicinity // Geochem. Geophys. Geosyst. 2016. V. 17 P. 3674–3690. 10.1002/2016GC006366' target='_blank'>https://doi: 10.1002/2016GC006366
- Long M. Constraints on subduction geodynamics from seismic anisotropy // Rev. Geophys. 2013. V. 51 P. 76–112. https://doi.org/10.1002/rog.20008
- Long M., Silver P. Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions // Surv. Geophys. 2009. V. 30 P. 407–461. https://doi.org/10.1007/s10712-009-9075-1
- Ma J., Bunge H.-P., Thrastarson S., Fichtner A., van Herwaarden D.-P., Tian Y., Chang S.-G., Liu T. Seismic full-waveform inversion of the crust-mantle structure beneath China and adjacent regions // Journal of Geophysical Research: Solid Earth. 2022. V. 127. e2022JB024957. https://doi.org/10.1029/2022JB
- Ma J., Bunge H.-P., Fichtner A., Chang S.-J., Tian Y. Structure and dynamics of lithosphere and asthenosphere in Asia: A seismological perspective // Geophysical Research Letters. 2023. V. 50. e2022GL101704. https://doi.org/10.1029/2022GL101704
- Mainprice D., Nicolas A. Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust // Journal of Structural Geology. 1989. V. 11. № 1–2. P. 175–189. https://doi.org/10.1016/0191-8141(89)90042-4
- Montagner J.-P., Anderson D.L. Constrained reference mantle model // Phys. Earth Planet. Inter. 1989. V. 58. P. 205–227. https://doi.org/10.1016/0031-9201(89)90055-1
- Montagner J.-P., Kennett B.L.N. How to reconcile body-wave and normal-mode reference Earth models // Geophys. J. Int. 1996. V. 125. P. 229–248. https://doi.org/10.1111/j.1365-246X.1996.tb06548.x
- Panning M.P., Lekić V., Romanowicz B. Importance of crustal corrections in the development of a new global model of radial anisotropy // J. Geophys. Res. 2010. V. 115. B12325. http://dx.doi.org/10.1029/2010JB007520
- Priestley K., McKenzie D., Ho T. A lithosphere-asthenosphere boundary — a global model derived from multimode surface-wave tomography and petrology. Lithospheric Discontinuities / Yuan H., Romanowicz B. (eds.). AGU, Geophysical Monograph Series. Chapter 6. 2019. P. 111–123. https://doi.org/10.1002/9781119249740.ch6
- Restelli F., Koelemeijer P., Ferreira A.M.G. Normal mode observability of radial anisotropy in the Earth’s mantle // Geophys. J. Int. 2023. V. 233. P. 663–679. https://doi.org/10.1093/gji/ggac474
- Ritzwoller M.H., Levshin A.L. Eurasian surface wave tomography: Group velocities // J. Geophys. Res. 1998. V. 103. P. 4839–4878. https://doi.org/10.1029/97JB02622
- Sannikov K.Yu., Lyskova E.L., Sannikov A.K. On peculiarities of radial anisotropy distribution in the European region from surface wave tomography. Problems of Geocosmos 2024. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. 2025. (in press)
- Schaeffer AJ, Lebedev S Global shear speed structure of the upper mantle and transitional zone // Geophys. J. Int. 2013. V. 194. P. 417–449. 10.1093/gji/ggt095' target='_blank'>https://doi: 10.1093/gji/ggt095
- Şengör A.M.C., Natal’in B.A., Burtman V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia // Nature. 1993. V. 364. P. 299–307. https://doi.org/10.1038/364299a0
- Seredkina A. S-wave velocity structure of the upper mantle beneath the Arctic region from Rayleigh wave dispersion data // Phys. Earth Planet. Inter. 2019. V. 290. P. 76–86. https://doi.org/10.1016/j.pepi.2019.03.007
- Seredkina A.I., Kozhevnikov V.M., Melnikova V.I., Solovey O.A. Seismicity and S-wave velocity structure of the crust and the upper mantle in the Baikal rift and adjacent regions // Phys. Earth Planet. Inter. 2016. V. 261. P. 152–160. 10.1016/j.pepi.2016.10.011' target='_blank'>https://doi: 10.1016/j.pepi.2016.10.011
- Shapiro N.M., Ritzwoller M.H. Monte-Carlo inversion for a global shear velocity model for the crust and upper mantle // Geophys. J. Inter. 2002. V. 151. № 1. P. 88–105. https://doi.org/10.1046/j.1365-246X.2002.01742.x
- Tang Q., Sun W., Yoshizawa K., Fu L.-Y. Anomalous radial anisotropy and its implications for upper mantle dynamics beneath South China from multimode surface wave tomography // Journal of Geophysical Research: Solid Earth. 2022. V. 127. e2021JB023485. https://doi.org/10.1029/2021JB023485
- Tanimoto T., Anderson D.L. Mapping convection in the mantle // Geophys. Res. Lett. 1984. V. 11. P. 287–290. https://doi.org/10.1029/GL011i004p00287
- Tao K., Grand S. P., Niu F. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography // Geochemistry, Geophysics, Geosystems. 2018. V. 19. P. 2732–2763. https://doi.org/10.1029/2018GC007460
- Tesoniero A., Auer L., Boschi L., Cammarano F. Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity // J. Geophys. Res. 2015. V. 120 (11). P. 7789–7813. https://doi.org/10.1002/2015JB012026
- Wang W., Qiao X., Yang Y., Wang D. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements // Geophys. J. Int. 2017. V. 208. P. 1088–1102. https://doi: 10.1093/gji/ggw445
- Witek M., Chang S.-J., Lim D.Y., Ning S., Ning J. Radial anisotropy in East Asia from multimode surface wave tomography // Journal of Geophysical Research: Solid Earth. 2021. V. 126. e2020JB021201. https://doi.org/10.1029/2020JB021201
- Yanovskaya T.B., Antonova L.M., Kozhevnikov V.M. Lateral variations of the upper mantle structure in Eurasia from group velocities of surface waves // Phys. Earth Planet. Int. 2000. V. 122. P. 19–32. https://doi.org/10.1016/S0031-9201(00)00184-9
- Yanovskaya T.B., Kozhevnikov V.M. 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data // Phys. Earth Planet. Int. 2003. V. 138. P. 263–278. https://doi.org/10.1016/S0031-9201(03)00154-7
- Zhao D., Yu S., Liu X. Seismic anisotropy tomography: New insight into subduction dynamics // Gondwana Research. 2016. V. 33. P. 24–43. http://dx.doi.org/10.1016/j.gr.2015.05.008
- Zhao D., Liu X., Wang Z., Gou T. Seismic anisotropy tomography and mantle dynamics // Surv. Geophys. 2023. V. 44. P. 947–982. https://doi.org/10.1007/s10712-022-09764-7
- Zhou Y., Nolet G., Dahlen F.A., Laske G. Global upper-mantle structure from finite-frequency surface-wave tomography // J. Geophys. Res. 2006. V. 111. B04304. 10.1029/2005JB003677' target='_blank'>https://doi: 10.1029/2005JB003677
- Zhou L., Xie J., Shen W., Zheng Y., Yang Y., Shi H., Ritzwoller M.H. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography // Geophys. J. Int. 2012. V. 189. P. 1565–1583. doi: 10.1111/j.1365-246X.2012.05423.x
Қосымша файлдар
