Stochastic Simulations and Ground Motion Prediction Equation for Peak Accelerations, Peak Velocities and Response Spectra for the Ural Region

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The characteristics of radiation and propagation of seismic waves in the Ural region were refined based on stochastic modeling of the records of local earthquakes; these characteristics correspond to transient characteristics from areas of stable continental seismicity to seismically active regions with crustal seismicity. Ground motion prediction equation (GMPE) has been constructed for the Ural region, describing the dependence of peak accelerations (PGA), peak velocities (PGV) and acceleration response spectrum amplitudes (SA) on rock on magnitude and distance. The GMPE is applicable in a wide range of magnitudes (MW~4–6.5) and distances (1–250 km) and can be applied to assess seismic hazard in the design and construction of earthquake-resistant structures in the Ural region. To account for the epistemic uncertainty of the estimates of seismic impacts in probabilistic seismic hazard analysis and construct a logic tree, five alternative modern GMPEs from other regions were selected: a global model for crustal seismicity, two models developed for the mountain regions of the Swiss and French Alps, two models for regions of stable continental seismicity – eastern North America and Great Britain. These models were tested using the array of synthetic ground motion parameters; the equation for the Swiss Alps turned out to be the closest to the developed GMPE for the Urals.

Texto integral

Acesso é fechado

Sobre autores

V. Pavlenko

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: pavlenko.vasily@gmail.com
Rússia, Moscow

О. Pavlenko

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: olga@ifz.ru
Rússia, Moscow

Bibliografia

  1. Верхоланцев Ф.Г., Габсатарова И.П., Гусева Н.С., Дягилев Р.А. Среднеуральское землетрясение 18 октября 2015 г. MLрег = 4.7, I0 = 6 // Землетрясения Северной Евразии. 2021. Вып. 24 (2015 г.). C. 314–323.
  2. Глубинное строение Урала по геофизическим данным. Глубинное строение СССР / В. В. Белоусов (ред.). М.: Наука. 1991. 224 с.
  3. Глубинное строение Урала по геофизическим данным / В. М. Рыбалка, Е. М. Ананьева, С. Н. Кашубин и др. (ред.). Геология и минерагения подвижных поясов. Екатеринбург: Урал-геолком, 1997. С. 101–118.
  4. Глубинное строение Урала по меридиональному профилю ГСЗ Нижняя Тура–Орск / В.С. Дружинин, С. Н. Кашубин, В. И. Вальчак и др. (ред.). Советская геология. 1985. № 1. С. 74–86.
  5. Годзиковская А.А. Каталог сейсмических событий Уральского региона с древнейших времен по 2002 г. (Сопутствующие первичные материалы). М.: ИФЗ РАН. 2016. 258 с.
  6. Гуляев А. Н. Новейшая тектоника и сейсмичность Урала // Известия высших учебных заведений. 2022. №. 2. С. 77–84.
  7. Гусев А.А., Мельникова В.Н. Связи между магнитудами — среднемировые и для Камчатки // Вулканология и сейсмология. 1990. № 6. С. 55—63.
  8. Дружинин В.С., Рыбалка В.М., Соболев И.Д. Связь тектоники и магматизма с глубинным строением Среднего Урала по данным ГСЗ. Свердловск: УНЦ АН СССР. 1976. 156 с.
  9. Дружинин B.C., Юнусов ФФ., Парыгин Г.И. Специфика сейсмичности Уральского региона. — Глубинное строение и развитие Урала. Екатеринбург: Наука. 1996. С. 102–110.
  10. Дружинин В С, Гуляев А.П., Колмогорова В.В. и др. К вопросу о природе землетрясений на Урале // Уральский геофизический вестник. 2004. № 6. C. 29–42.
  11. Дягилев Р.А., Верхоланцев Ф.Г., Варлашова Ю.В., Шулаков Д.Ю., Габсатарова И.П., Епифанский А.Г. Катав-Ивановское землетрясение 04.09.2018 г., mb = 5.4 (Урал) // Российский сейсмологический журнал. 2020. Т. 2. № 2. C. 7–20. doi: 10.35540/2686-7907.2020.2.01 — EDN: CDITJV
  12. Дягилев Р.А., Скоркина А.А. Определение параметров затухания сейсмических волн для территории Урала. Cовременные методы обработки и интерпретации сейсмологических данных. Материалы седьмой международной сейсмологической школы. Обнинск: ГС РАН. 2012. С. 126–129.
  13. Еманов А.Ф., Еманов А.А., Павленко О.В., Фатеев А.В., Куприш О.В., Подкорытова В.Г. Колыванское землетрясение 09.01.2019 с ML= 4.3 и особенности наведенной сейсмичности в условиях Горловского угольного бассейна // Вопросы инженерной сейсмологии. 2019. Т. 46. № 4. С. 29–45.
  14. Павленко О.В. Характеристики излучения и распространения сейсмических волн на Северном Кавказе, оцененные по записям сейсмостанций “Сочи” и “Анапа” // Вопросы инженерной сейсмологии. 2016. Т. 43. № 1. C. 49–61.
  15. Павленко О.В., Тубанов Ц.А. Характеристики излучения и распространения сейсмических волн в Байкальской Рифтовой зоне, оцененные моделированием акселерограмм зарегистрированных землетрясений // Физика Земли. 2017. № 1. C. 20–33.
  16. Павленко О.В. Записи местных землетрясений как основа для корректных оценок сейсмических воздействий (на примере трассы второго Северомуйского тоннеля) // Геология и геофизика. 2020. doi: 10.15372/GiG2020203
  17. Павленко В.А. Предварительные оценки характеристик излучения и распространения сейсмических волн и уравнения прогноза движений грунта для Уральского региона // Вопросы инженерной сейсмологии. 2022. Т. 49. № 2. С. 74–84. doi: 10.21455/VIS2022.2-4
  18. Сейсмичность и сейсмическое районирование Уральского региона / С. Н. Кашубин, В. С. Дружинин, А.Н. Гуляев, О.А. Кусонский, В.С. Ломакин, А.А. Маловичко, С.Н. Никитин, Г.И. Парыгин, Б.П. Рыжий, В.И. Уткин (ред.). УРО РАН. 2001. 126 с. ISBN: 5-7691-1212-3
  19. Тектоническая карта Урала масштаба 1 : 1000000 / И.Д. Соболев, С.В. Автонеев, Р.П. Белковская и др. (ред.). Свердловск: ПГО “Уралгеология”. 1986. 168 с.
  20. Atkinson G.M. Ground-motion prediction equations for eastern North America from a referenced empirical approach: Implications for epistemic uncertainty // Bull. Seismol. Soc. Am. 2008. V. 98. № 3. P. 1304–1318. doi: 10.1785/0120070199
  21. Atkinson G.M., Boore D.M. Earthquake ground-motion prediction equations for eastern North America // Bull. Seismol. Soc. Am. 2006. V. 96. № 6. P. 2181–2205. doi: 10.1785/0120050245
  22. Atkinson G.M., Boore D.M. ERRATUM. Earthquake ground-motion prediction equations for eastern North America // Bull. Seismol. Soc. Am. 2007. V. 97. № 3. P. 1032. doi: 10.1785/0120070023
  23. Boore D.M. Simulation of Ground Motion Using the Stochastic Method // Pure Appl. Geophys. 2003. V. 160. P. 635–676.
  24. Boore D.M., Joyner W.B. Site amplifications for Generic Rock Sites // Bull. Seismol. Soc. Am. 1997. V. 87. № 2. P. 327–341.
  25. Boore D.M., Stewart J.P. Seyhan E., Atkinson G.M. NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes // Earthq. Spectra. 2014. V. 30. № 3. P. 1057–1085. doi: 10.1193/070113EQS184M
  26. Budnitz R.J., Apostolakis G., Boore D.M., Cluff L.S., Coppersmith K.J., Cornell C.A., Morris P.A. Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. U.S. Nuclear Regulatory Commission Report NUREG/CR-6372. 1997.
  27. Campbell K.W. Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America // Bull. Seismol. Soc. Am. 2003. V. 93. № 3. P. 1012–1033.
  28. Cauzzi C., Edwards B., Fah D., Clinton J., Wiemer S., Kastli P., Cua G., Giardini D. New predictive equations and site amplification estimates for the next-generation Swiss ShakeMaps // Geophys. J. Int. 2015. V. 200. № 1. P. 421–438. doi: 10.1093/gji/ggu404
  29. Chen Y.-S., Weatherill G., Pagani M., Cotton F. A transparent and data-driven global tectonic regionalization model for seismic hazard assessment // Geophys. J. Int. 2018. V. 213. № 2. P. 1263–1280. doi: 10.1093/gji/ggy005
  30. Cornell C. A. Engineering seismic risk analysis // Bull. Seismol. Soc. Am. 1968. V. 58. № 5. P. 1583–1606.
  31. Costa G., Panza G.F., Suhadolc P., Vaccari F. Zoning of the Italian territory in terms of expected peak ground acceleration derived from complete synthetic seismograms // J. Appl. Geophys. 1993. V. 30(1–2). P. 149–160. doi: 10.1016/0926-9851(93)90023-R
  32. Douglas J. Ground motion prediction equations 1964-2021. Department of Civil and Environmental Engineering. University of Strathclyde. 2021. http://www.gmpe.org.uk/ gmpereport2014.pdf
  33. Drouet S., Cotton F. Regional stochastic GMPEs in low-seismicity areas: scaling and aleatory variability analysis — application to the French Alps // Bull. Seismol. Soc. Am. 2015. V. 105. № 4. P. 1883–1902. doi: 10.1785/0120140240
  34. Flinn E.A., Engdahl E.R., Hill A.R. Seismic and geographical regionalization // Bull. Seismol. Soc. Am. 1974. V. 64. № 3–2. P. 771–993.
  35. Hanks T.C., McGuire R.K. The character of high frequency strong ground motion // Bull. Seism. Soc. Am. 1981. V. 71. P. 2071–2095.
  36. Joyner W.B., Boore D.M. Methods for regression analysis of strong motion data // Bull. Seismol. Soc. Am. 1993.V. 83. № 2. P. 469–487.
  37. Joyner W.B., Boore D.M. Methods for regression analysis of strong motion data. ERRATA // Bull. Seismol. Soc. Am. 1994. V. 84. № 3. P. 955–956.
  38. Orozova I. M., Suhadolc P. A deterministic-probabilistic approach for seismic hazard assessment // Tectonophys. 1999. V. 312. № 2–4. P. 191–202. doi: 10.1016/s0040-1951(99)00162-6
  39. Pavlenko O.V. Simulation of ground motion from strong earthquakes of Kamchatka region (1992–1993) at rock and soil sites // Pure Appl. Geoph. 2013. V. 170. № 4. P. 571–595.
  40. Pavlenko O., Kozlovskaya E. Characteristics of radiation and propagation of seismic waves in the Northern Finland estimated based on records of local earthquakes // Pure Appl. Geoph. 2018. V. 175. № 12. P. 4197–4223 https://doi.org/10.1007/s00024-018-1919-5
  41. Rietbrock A., Strasser F., Edwards B. A stochastic ground-motion prediction model for the United Kingdom // Bull. Seismol. Soc. Am. 2013. V. 103. № 1. P. 57–77. doi: 10.1785/0120110231
  42. Ryzhiy B.P., Druzhinin V.S., Yunusov F.F., Ananyin I.V. Deep structure of the Urals region and its seismicity // Physics of the Earth and Planetary Interios. 1992. V. 75. P. 185–191.
  43. Scherbaum F., Delavaud E., Riggelsen C. Model selection in seismic hazard analysis: an information-theoretic perspective // Bull. Seismol. Soc. Am. 2009. V. 99. № 6. P. 3234–3247. doi: 10.1785/0120080347
  44. Tavakoli B., Pezeshk S. Empirical-stochastic ground-motion prediction for eastern North America // Bull. Seismol. Soc. Am. 2005. V. 95. № 6. P. 2283–2296. doi: 10.1785/0120050030
  45. Toro G. R., Abrahamson N. A., Schneider J. F. Model of strong ground motions from earthquakes in central and eastern North America: Best estimates and uncertainties // Seismol. Res. Lett. 1997. V. 68. № 1. P. 41–57.
  46. Young J.B., Presgrave B.W., Aichele H., Wiens D.A., Flinn E.A. The Flinn-Engdahl regionalisation scheme: the 1995 revision // Phys. Earth Planet Int. 1996. V. 96. № 4. P. 223–297. doi: 10.1016/0031-9201(96)03141-X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Map of epicentres of local earthquakes in the Ural region, from records of which regional characteristics of radiation and propagation of seismic waves were studied. Epicentres of earthquakes and mountain shocks, information about which is given in Table 1, are shown with yellow circles. Foci of identified earthquakes are circled in black, and the date of the event is given for them.

Baixar (988KB)
3. Fig. 2. Velocity section of the Earth's crust along the central part of the Sverdlovsk profile obtained by depth seismic sounding methods (based on [Druzhinin et al., 1976; Depth structure..., 1985]).

Baixar (158KB)
4. Fig. 3. Recorded (NS- and EW-components, black lines) and modelled (blue lines) accelerograms of horizontal components and corresponding Fourier amplitude spectra of NS- and EW-components of the recorded accelerograms (red and black lines) and averaged spectra of the calculated accelerograms (blue lines). The parameters of the sources from IRIS data were used in the modelling.

Baixar (616KB)
5. Fig. 4. Recorded and modelled accelerograms of horizontal components. The designations are the same as in Fig. 3. In the modelling we used the parameters of the sources according to the data of FIC EGS RAS.

Baixar (993KB)
6. Fig. 5. Dependence of the estimates of (a) PGA, (b) PGV, (c) SA (0.1 s), (d) SA (0.5 s), (e) SA (1.0 s), (f) SA (5.0 s) obtained from equation (2) on the magnitude and Joyner-Boer distance. Black dots show the mean values of the estimates of the corresponding motion parameters constructed by stochastic modelling. Black lines show the estimates of equation (2) for magnitudes MW = 4.0-6.5.

Baixar (532KB)
7. Fig. 6. Acceleration response spectra with 5% attenuation calculated using equation (2) for values of (a) rJB = 3 km and (b) rJB = 35 km. Black dots show the mean values of the SA estimates constructed by stochastic modelling. Black lines show the estimates of equation (2) for magnitudes MW = 4.0-6.5.

Baixar (205KB)
8. Fig. 7. Comparison of PGA and SA estimates obtained from the UPDG of different authors and from the UPDG proposed in the present work (a), (b) for MW = 4.5; (c), (d) for MW = 6.5.

Baixar (365KB)
9. Fig. 8. Calculation of LLH value on random samples: (a) - shows the original distribution (1) and distributions with modified parameters (2-5); (b)-(f) - shows the results of LLH value calculation when testing distributions with modified parameters on a sample from the original distribution. Grey dots show the likelihood values of individual observations, black lines show the LLH values.

Baixar (370KB)
10. Fig. 9. Values of the LLH value when testing different SDGs on a set of synthetic parameters of surface oscillations constructed by stochastic modelling methods: (a) - for a set of 5 SDGs considered in this paper; (b) - for a set of SDGs recommended for the Urals by the GEM project.

Baixar (265KB)

Declaração de direitos autorais © Russian academy of sciences, 2025