Observations of the Blomstrand Glacier Activation in the North of West Spitsbergen Island Based on Data from a Single Seismic Station
- Authors: Fedorov A.V.1, Baranov S.V.1, Asming V.E.1, Fedorov I.S.1
-
Affiliations:
- Kola Branch of the Federal Research Center “United Geophysical Service of the Russian Academy of Sciences”
- Issue: No 4 (2025)
- Pages: 80-92
- Section: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/692420
- DOI: https://doi.org/10.31857/S0002333725040066
- ID: 692420
Cite item
Abstract
At the end of 2019, the automated seismological monitoring system of the Kola Branch of the FRC UGS RAS recorded an increase in weak seismicity localized in the northwestern part of West Spitsbergen Island. The intensity of the seismic process reached several dozens of events per day. A preliminary analysis of the records of seismic events visually revealed a high degree of similarity in their waveforms. To obtain the most complete catalogue and spatial-temporal representation of the development of this seismic process, the cross-correlation detection method was used. The resulting final catalogue contains over 9,000 seismic events in the magnitude range (ML) from –0.4 to 0.6. The localization of the epicenters showed that they are confined to the ablation zone of the Blomstrand Glacier. Analysis of the resulting catalogue showed that the sequence began and ended abruptly, with variations in the amplitudes of seismic events and the times between their occurrence taking place simultaneously. Comparison of the seismic monitoring results with satellite images obtained by the Santinel-2 research apparatus in the radio frequency range showed a connection between this seismic sequence and a large-scale movement of the terminal part of the Blomstrand Glacier, accompanied by massive emissions of ice material into the bay. At the same time, during the period of active seismic process, no significant movements of the glacier front were observed, and large-scale movement of the glacier coincided with the end of seismic activation. Satellite data, as well as the periodicity in the occurrence of seismic events and the high similarity of their waveforms may indicate the manifestation of the phenomenon of stick-slip motion of the glacier along the bed in the process of preparing for a large-scale movement.
About the authors
A. V. Fedorov
Kola Branch of the Federal Research Center “United Geophysical Service of the Russian Academy of Sciences”
Email: Afedorov@krsc.ru
Apatity, Russia
S. V. Baranov
Kola Branch of the Federal Research Center “United Geophysical Service of the Russian Academy of Sciences”Apatity, Russia
V. E. Asming
Kola Branch of the Federal Research Center “United Geophysical Service of the Russian Academy of Sciences”Apatity, Russia
I. S. Fedorov
Kola Branch of the Federal Research Center “United Geophysical Service of the Russian Academy of Sciences”Apatity, Russia
References
- Асминг В.Э., Федоров А.В. Возможности применения автоматического детектора-локатора сейсмических событий по одиночной станции для детальных сейсмологических наблюдений // Сейсмические приборы. 2014. Т. 50. № 3. С. 19–29. EDN: SLRRSN
- Асминг В.Э., Федоров А.В., Аленичева А.О., Евтюгина З.А. Применение системы автоматической локации NSDL для детального изучения сейсмичности архипелага Шпицберген // Вестник Кольского научного центра РАН. 2018. Т. 10. № 3. С. 120–131. EDN: YYITVZ.
- Соболев Г.А., Пономарев А.В., Майбук Ю.Я. Инициирование неустойчивых подвижек — микроземлетрясений упругими импульсами // Физика Земли. 2016. № 5. P. 51–69. doi: 10.7868/S0002333716050136
- Федоров А.В., Асминг В.Э. Мониторинг активности ледников Шпицбергена сейсмическим методом // Наука и технологические разработки. 2015. Т. 94. № 4. С. 44–52. EDN: WAOWMT.
- Федоров А.В., Асминг В.Э., Евтюгина З.А., Прокудина А.В. Система автоматического мониторинга сейсмичности Европейской Арктики // Сейсмические приборы. 2018. Т. 54. № 1. С. 29–39. doi: 10.21455/si2018.1-3. EDN: YUOLJG
- Allstadt K., Malone S.D. Swarms of repeating stick-slip icequakes triggered by snow loading at Mount Rainier volcano // Journal of Geophysical Research: Earth Surface. 2014. V. 119. № 5. P. 1180–1203. doi: 10.1002/2014JF003086
- Anstey N.A. Correlation Techniques — A Review // Can. J. Expl. Geophys. 1966. V. 2. P. 55–82.
- Aster R.C., Winberry J.P. Glacial seismology // Reports on Progress in Physics. 2017. V. 80. № 12. P. 126801. doi: 10.1088/1361-6633/aa8473
- Bevington A., Copland L. Characteristics of the last five surges of Lowell Glacier, Yukon, Canada, since 1948 // Journal of Glaciology. 2014. V. 60 (219). P. 113–123. doi: 10.3189/2014JoG13J134
- Burton D.J., Dowdeswell J.A., Hogan K.A., Noormets R. Marginal fluctuations of a Svalbard surge-type tidewater glacier, Blomstrandbreen, since the Little Ice Age: a record of three surges // Arctic, Antarctic, and Alpine Research. 2016. V. 48. № 2. P. 411–426. https://doi.org/10.1657/AAAR0014-094
- Dyagilev R.A., Sdelnikova I.A. Large-Scale Research Facilities “Seismic Infrasound Array for Monitoring Arctic Cryolitozone and Continuous Seismic Monitoring of the Russian Federation, Neighbouring Territories and the World” // Geodynamics & Tectonophysics. 2022. V. 13 (2), 591. P. 1–8. doi: 10.5800/GT-2022-13-2-0591
- Fürst J.J., Gillet-Chaulet F., Benham T.J., Dowdeswell J.A., Grabiec M., Navarro F., Pettersson R., Moholdt G., Nuth C., Sass B., Aas K., Fettweis X., Lang C., Seehaus T., Braun M. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard // The Cryosphere. 2017. V. 11. P. 2003–2032. https://doi.org/10.5194/tc-11-2003-2017
- Gibbons S.J., Ringdal F. The detection of low magnitude seismic events using array-based waveform correlation // Geophysical Journal International. 2006. V. 165. № 1. P. 149–166. https://doi.org/10.1111/j.1365-246X.2006.02865.x
- Harris D.B. A waveform correlation method for identifying quarry explosions // Bulletin of the Seismological Society of America. 1991. V. 81. № 6. P. 2395–2418. https://doi.org/10.1785/BSSA0810062395
- Helmstetter A., Nicolas B., Comon P., Gay M. Basal icequakes recorded beneath an Alpine glacier (Glacier d’Argentière, Mont Blanc, France): Evidence for stick-slip motion? // Journal of Geophysical Research: Earth Surface. 2015. V. 120. № 3. P. 379–401. doi: 10.1002/2014JF003288
- Israelsson H. Correlation of waveforms from closely spaced regional events // Bulletin of the Seismological Society of America. 1990. V. 80. № 6B. P. 2177–2193. https://doi.org/10.1785/BSSA08006B2177
- Köhler A., Chapuis A., Nuth C., Kohler J., Weidle C. Seasonal variations of glacier dynamics at Kronebreen, Svalbard revealed by calving related seismicity // The Cryosphere Discussions. 2011. V. 5. № 6. P. 3291–3321. doi: 10.5194/tcd-5-3291-2011
- Köhler A., Maupin V., Nuth C., Van Pelt W. Characterization of seasonal glacial seismicity from a single-station on-ice record at Holtedahlfonna, Svalbard // Annals of Glaciology. 2019. V. 60. № 79. P. 23–36. doi: 10.1017/aog.2019.15
- Köhler A., Myklebust E.B., Mæland S. Enhancing seismic calving event identification in Svalbard through empirical matched field processing and machine learning // Geophysical Journal International. 2022. V. 230. № 2. P. 1305–1317. doi: 10.1093/gji/ggac117
- Köhler A., Nuth C., Kohler J., Berthier E., Weidle C., Schweitzer J. A 15 year record of frontal glacier ablation rates estimated from seismic data // Geophys. Res. Lett. 2016. V. 43. P. 12155–12164. doi: 10.1002/2016GL070589
- Köhler A., Nuth C., Schweitzer J., Weidle C., Gibbons S.J. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard // Polar Research. 2015. V. 34. № 1. P. 26178. https://doi.org/10.3402/polar.v34.26178
- Meier M.F., Post A. What are glacier surges? // Canadian Journal of Earth Sciences. 1969. V. 6. № 4. P. 807–817. doi: 10.1139/e69-081
- Nuth C., Schuler T.V., Kohler J., Altena B., Hagen J.O. Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modeling // Journal of Glaciology. 2012. V. 58. № 207. P. 119–133. doi: 10.3189/2012JoG11J036, 2012
- O’Neel S., Marshall H.P., McNamara D.E., Pfeffer W.T. Seismic detection and analysis of icequakes at Columbia Glacier, Alaska // J. Geophys. Res. 2007. V. 112. P. F03S23. doi: 10.1029/2006JF000595
- Pirli M., Hainzl S., Schweitzer J., Köhler A., Dahm T. Localised thickening and grounding of an Antarctic ice shelf from tidal triggering and sizing of cryoseismicity // Earth and Planetary Science Letters. 2018. V. 503. P. 78–87. https://doi.org/10.1016/j.epsl.2018.09.024
- Podolskiy E.A., Walter F. Cryoseismology // Reviews of geophysics. 2016. V. 54. № 4. P. 708–758. doi: 10.1002/2016RG000526
- Schellenberger T., Dunse T., Kääb A., Kohler J., Reijmer C.H. Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking // The Cryosphere. 2015. V. 9. № 6. P. 2339–2355. doi: 10.5194/tc-9-2339-2015
- Shakirova A., Chemarev A. Multiplets of low-frequency earthquakes during the eruption of the Kizimen volcano in 2011–2012, Russia // Journal of Volcanology and Geothermal Research. 2023. V. 438. P. 107805. https://doi.org/10.1016/j.jvolgeores.2023.107805
- Sobolev G., Spetzler H., Koltsov A. et al. An experimental study of triggered stick-slip // Pure and applied geophysics. 1993. V. 140. P. 79–94. https://doi.org/10.1007/BF00876872
- Thelen W.A., Allstadt K., De Angelis S., Malone S.D., Moran S.C., Vidale J. Shallow repeating seismic events under an alpine glacier at Mount Rainier, Washington, USA // Journal of Glaciology. 2013. V. 59. № 214. P. 345–356. doi: 10.3189/2013JoG12J111
- VanWormer D., Berg E. Seismic evidence for glacier motion // Journal of Glaciology. 1973. V. 12. № 65. P. 259–265. doi: 10.3189/S002214300003207X
- Vinogradov Yu.A., Asming V.E., Baranov S.V., Fedorov A.V., Vinogradov A.N. Seismic and infrasonic monitoring of glacier destruction: A pilot experiment on Svalbard // Seismic Instruments. 2015. V. 51. P. 1–7. doi: 10.3103/S0747923915010119
- Wiens D.A., Anandakrishnan S., Winberry J.P., King M.A. Simultaneous teleseismic and geodetic observations of the stick–slip motion of an Antarctic ice stream // Nature. 2008. V. 453. № 7196. P. 770–774. doi: 10.1038/nature06990
- Zoet L., Anandakrishnan S., Alley R., Nyblade A., Wiens D. Motion of an Antarctic glacier by repeated tidally modulated earthquakes // Nature Geoscience. 2012. V. 5. № 9. P. 623–626. doi: 10.1038/ngeo1555
Supplementary files
