New Methods for Analyzing the Nature of Seismic Regime Non-Stationarity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Three new methods in geophysics for analyzing the non-stationarity of data series are used to analyze earthquake catalogs of the Kuril-Kamchatka and Mid-Atlantic Ridge regions. The possibility of identifying the non-stationary component of the seismic regime and the nature of non-stationarity are discussed. The use of new methods confirmed a number of known (expected) patterns and indicated a number of non-trivial points. Among these, the following were identified: a tendency of increasing non-stationarity with increasing characteristic time, which may conform to the correspondence of seismic activity spectrum to the flicker noise; 2) a difference in the nature of the magnitude distribution, possibly corresponding to a decrease in b-values, for clustering main events; 3) detection of two tendencies in the seismicity regime over time — clustering at smaller relative distances and repulsion at larger ones; these tendencies may correspond to the epochs of seismic activity growth and subsequent attenuation, during the accumulation of tectonic stresses. The results indicate the prospects of using these new analysis methods in seismology, providing clarification of the non-stationary nature of the seismic process.

Full Text

Restricted Access

About the authors

А. А. Kislitsyn

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences

Email: rodkin@mitp.ru
Russian Federation, Moscow; Moscow

Yu. N. Orlov

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: rodkin@mitp.ru
Russian Federation, Moscow

М. V. Rodkin

Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Author for correspondence.
Email: rodkin@mitp.ru
Russian Federation, Moscow; Moscow

References

  1. Бердыев А.А., Мухамедов В.А. Землетрясения — фликкер-шум? // Докл. АН СССР. 1987. Т. 297. № 5. С. 1077–1081.
  2. Вадковский В.Н., Ляховский В.А., Тюпкин Ю.С. Временная эволюция сейсмической активности Балканского региона. Алгоритмы и результаты обработки в МЦД. 1978. С. 11–23.
  3. Джонсон Н.Л., Коц С., Кемп А. Одномерные дискретные распределения (пер. с англ.). М.: Бином. 2010. 559 с.
  4. Дещеревский А.В., Журавлев В.И. Временной режим микроземлетрясений на Гармском полигоне // Физика Земли. 2004. № 1. С. 70–88.
  5. Кислицын А.А. Моделирование графов ближайших соседей для оценки независимости выборочных данных // Математическое моделирование. 2023. Т. 35. № 7. С. 63–82.
  6. Королюк В.С., Портенко Н.И., Скороход А.В., Турбин А.Ф. Справочник по теории вероятностей и математической статистике. М.: Наука. 1985. 640 с.
  7. Орлов Ю.Н., Осминин К.П. Построение выборочной функции распределения для прогнозирования нестационарного временного ряда // Математическое моделирование. 2008. № 9. С. 23–33.
  8. Орлов Ю.Н. Кинетические методы исследования нестационарных временных рядов. М.: МФТИ. 2014. 276 с.
  9. Писаренко В.Ф., Родкин М.В. Декластеризация потока сейсмических событий, статистический анализ // Физика Земли. 2019. № 5. С. 2–16.
  10. Родкин М.В., Липеровская Е.В. Неравномерности интенсивности потока основных событий, пример неглубокой сейсмичности региона Камчатки // Физика Земли. 2022. № 4. С. 85–100.
  11. Смирнов В.Б., Пономарёв А. В., Бернар П., Патонин А. В. Закономерности переходных режимов сейсмического процесса по данным лабораторного и натурного моделирования // Физика Земли. 2010. № 2. С. 17–49.
  12. Смирнов В.Б., Пономарев А.В. Физика переходных режимов сейсмичности. М.: РАН. 2020. 412 с.
  13. Смирнов В.Б., Потанина М.Г., Карцева Т.И., Пономарев А.В., Патонин А.В., Михайлов В.О. Сергеев Д.С. Сезонные вариации наклона графика повторяемости землетрясений в наведенной сейсмичности в области Койна–Варна, Западная Индия // Физика Земли. 2022. № 3. С. 76–91.
  14. Хинчин А.Я. Работы по математической теории массового обслуживания. М.: Государственное издательство физико-математической литературы. 1963. 235 с.
  15. Gardner J. K., Knopoff L. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? // Bull. Seis. Soc. Am. 1974. V. 64 (5). P. 1363–1367.
  16. Hirose F., Tamaribuchi K., Maeda K. Characteristics of foreshocks revealed by an earthquake forecasting method based on precursory swarm activity // Journal of Geophysical Research: Solid Earth. 2021. V. 126. e2021JB021673. https://doi.org/10.1029/2021JB021673
  17. Kislitsyn A.A, Orlov Yu.N. Dynamical System Model with the use of Liouville Equation for Empirical Distribution Function Densities // Discontinuity, Nonlinearity and Complexity/ 2020. V. 9. № 4. P. 529–540.
  18. Kislitsyn A.A., Orlov Yu.N. Discussion about Properties of First Neighbor Graphs // Lobachevskii Journal of Mathematics. 2022. V. 43. № 12. P. 109–118.
  19. Kislitsyn A.A., Orlov Yu.N., Goguev M.V. Investigation of the properties of first nearest neighbors graphs // Scientific Visualization. 2023. V. 15. № 1. P. 17–28. doi: 10.26583/sv.15.1.02
  20. Lucilla de Arcangelis, Cataldo Godano, Jean Robert Grasso, Eugenio Lippiello. Statistical physics approach to earthquake occurrence and forecasting // Physics Reports. 2016. V. 628. P. 1–91. https://doi.org/10.1016/j.physrep.2016.03.002
  21. Lippiello E., Godano C., de Arcangelis L. The relevance of foreshocks in earthquake triggering: A statistical study // Entropy. 2019. V. 21. P. 173. https://doi.org/10.3390/e21020173
  22. Molchan G., Dmitrieva O. Aftershock identification and new approaches // Geophys.J. Int. 1992. V. 109. P. 501–516.
  23. Ogata Y. Statistical models for earthquake occurrences and residual analysis for point processes // Tectonophysics. 1988. № 169. P. 159–174.
  24. Uhrhammer R. Characteristics of Northern and Central California Seismicity // Earthquake Notes. 1986. V. 57 (1). P. 21.
  25. Zaliapin I., Gabrielov A., Keilis-Borok V., Wong H. Clustering Analysis of Seismicity and Aftershock Identifcation // Phys. Rev. Lett. 2008. V. 101 (1). P. 1–4.
  26. Zalyapin I., Ben-Zion Y. Earthquake clusters in Southern California I: Identification and stability // Journ. Geophys. Res. 2013. V. 118. P. 2847–2864.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Magnitude distributions in 10 classes of Table 2 for different time intervals (t = 1-10) between the events (explanations in the text, CC catalogue without aftershocks).

Download (212KB)
3. Fig. 2. Non-stationarity indices J (N) of event occurrence times.

Download (292KB)
4. Fig. 3. Flow parameter for the KK region estimated from a sample length of 1000 days in 1-day increments.

Download (240KB)
5. Fig. 4. Flow parameter for the AH region estimated using a sample length of 300 days in 1-day increments.

Download (213KB)
6. Fig. 5. Mean annual flux parameter for the CC region (1) and AH (2).

Download (102KB)
7. Fig. 6. Graphs of first (a) and first + second "neighbours" (b) for 100 vertices for consecutive time intervals of the first 4950 events of the QC catalogue, considered as random values.

Download (302KB)

Copyright (c) 2025 Russian academy of sciences