Variations of 222Rn Content in Above- and Underground Conditions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The article presents the results of measuring 222Rn activity and its daughter decay products in the air of underground laboratories of Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (BNO INR RAS) at different distances from the entrance. The measurements were carried out with a cylindrical air pulse ionization chamber. It has been shown that the radon content in the flow of ventilated air, within the measurement accuracy, does not depend on the length of the path traveled, but increases abruptly in the locations of sources of underground gas and water emissions. Various mechanisms of air enrichment with radon are considered. The research methodology is presented, and the results of measurements of radon emission from the rocky soil of the walls of an underground room are presented. The results of measuring the radon content in water from various above- and underground sources using a low-background gamma spectrometer based on a semiconductor detector (SCD) made of ultrapure germanium are presented.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yu. Gavrilyuk

Institute for Nuclear Research of the Russian Academy of Sciences

Email: gangapsh@list.ru
Ресей, Moscow, 117312

A. Gangapshev

Institute for Nuclear Research of the Russian Academy of Sciences; Kabardino-Balkarian State University

Хат алмасуға жауапты Автор.
Email: gangapsh@list.ru
Ресей, Moscow, 117312; Nalchik, 360004

A. Gezhaev

Institute for Nuclear Research of the Russian Academy of Sciences

Email: gangapsh@list.ru
Ресей, Moscow, 117312

V. Kazalov

Institute for Nuclear Research of the Russian Academy of Sciences

Email: gangapsh@list.ru
Ресей, Moscow, 117312

V. Kuzminov

Institute for Nuclear Research of the Russian Academy of Sciences; Kabardino-Balkarian State University

Email: gangapsh@list.ru
Ресей, Moscow, 117312; Nalchik, 360004

A. Khokonov

Institute for Nuclear Research of the Russian Academy of Sciences; Adyghe State University

Email: gangapsh@list.ru
Ресей, Moscow, 117312; Maykop, 385000

R. Etezov

Institute for Nuclear Research of the Russian Academy of Sciences

Email: gangapsh@list.ru
Ресей, Moscow, 117312

Әдебиет тізімі

  1. Езимова Ю.Е., Удоратин В.В., Магомедова А.Ш. Четдинская радоновая аномалия (республика Коми): локализация и изучение // Геофизические исследования. 2022. Т. 23. № 4. С. 36–54.
  2. Моллаева М.З., Темботова Ф.А., Гангапшев А.М., Казалов В.В., Гежаев А.М. Содержание радионуклидов в хвое Pinus sylvestris L. в условиях Карачаево-Черкесской республики (Западный Кавказ) // Радиационная биология. Радиоэкология. 2023. Т. 63. № 4. С. 403–410.
  3. Удоратин В.В., Езимова Ю.Е., Магомедова А.Ш. Методика измерений объемной активности радона для платформенных областей // Физика Земли. 2020. № 4. С. 132–143.
  4. Amaré J., Bandac I., Blancas A., Borjabad S., Buisán, S. Cebrián S., Cintas D., Coarasa I., García E., Martínez M., Núñez–Lagos R., Oliván M.A., Ortigoza Y., Ortiz de Solórzano A., Pérez C., Puimedóna J., Rodríguez S., Salinas A., Sarsa M.L., Villar P. Long term measurement of the 222 Rn concentration in the Canfranc Underground Laboratory. arXiv:2203.13978v1 [physics.ins-det] 26 Mar 2022.
  5. Li Chunqian, Zhao Shibin, Zhang Chenglun, Li Meng, Guo Jinjia, Dimova Natasha T., Yang Tong, Liu Wen, Chen Guangquan, Yu Huaming, Xu Bochao. Further refinements of a continuous radon monitor for surface ocean water measurements // Front. Mar. Sci. 2022. № 9. P. 1047126.
  6. Chu M.C., Kwan K.K., Kwok M.W., Kwok T., Leung J.K.C., Leung K.Y., Lin Y.C., Luk K.B., Pun C.S.J. The radon monitoring system in Daya Bay Reactor Neutrino Experiment // Nuclear Instruments and Methods in Physics Research A. 2016. V. 808. P. 156–164.
  7. Gavrilyuk Yu.M., Gangapshev A.M., Kuzminov V.V., Panasenko S.I., Ratkevich S.S. Monitoring the 222Rn Concentration in the Air of Low-Background Laboratories by Means of an Ion-Pulse Ionization Chamber // Bulletin of the Russian Academy of Sciences. Physics. 2011. V. 75. № 4. P. 547–551.
  8. Gavrilyuk Yu.M., Gangapshev A.M., Gezhaev A.M., Etezov R.A., Kazalov V.V., Kuzminov V.V., Panasenko S.I., Ratkevich S.S., Tekueva D.A., Yakimenko S.P. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection // Nucl. Instrum. and Meth. A. 2015. V. 801. P. 27–33.
  9. Gavriljuk Yu.M., Gangapshev A.M., Gezhaev A.M., Kazalov V.V., Kuzminov V.V., Panasenko S.I., Ratkevich S.S., Smolnikov A.A., Yakimenko S.P. Working characteristics of the New Low-Background Laboratory (DULB-4900) // Nucl. Instrum. and Meth. A. 2013. V. 729. P. 576–580.
  10. Kuzminov V.V. Ion-pulse ionization chamber for direct measurement of a radon concentration in the air // Physics of Atomic Nuclei. 2003. V. 66. № 3. P. 462–465.
  11. Kuzminov V.V. The Baksan Neutrino Observatory // Eur. Phys. J. Plus. 2012. V. 127. P. 113.
  12. Lagios E., Sideris G., Zervos F., Tsourlos P., Nicholson R.A., Ponomarev A., Salov B., Balassanian S., Petrosyan G., Bushati S., Lika O. Tectonic early warning system through real-time radon (Rn) monitoring: preliminary results of geophysical method for forecasting earthquakes. Earthquake Hazard and Seismic Risk Reduction. Kluwer Academic Publishers. 2000. P. 261–270.
  13. Zafrir Hovav, Barbosa Susana, Levintal Elad, Weisbrod Noam, Yochai Ben Horin and Zalevsky Zeev. The Impact of Atmospheric and Tectonic Constraints on Radon-222 and Carbon Dioxide Flow in Geological Porous Media – A Dozen-Year Research Summary // Front. Earth Sci. 2020. № 8. P. 559298.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Block diagram of the monitor for radon content control in the air on the basis of cylindrical air pulse ionisation chamber: CVIC - ionisation chamber, ZSU - charge-sensitive preamplifier, HVI - high-voltage power supply, PC - personal computer, ARD - software-relay control board ARDUINO, DSP - digital oscilloscope LA-n10-12PCI, AC - air compressor.

Жүктеу (161KB)
3. Fig. 2. Example of the reconstructed amplitude spectrum of pulses accumulated for 179 minutes in measurements of radon content in the air of the ground room.

Жүктеу (167KB)
4. Fig. 3. Example of separation of the amplitude spectrum into substrate and peaks.

Жүктеу (178KB)
5. Fig. 4. Variations of 222Rn count rate in one of the rooms of the ground-based laboratory between 28 August and 16 September 2020.

Жүктеу (315KB)
6. Fig. 5. Variations in 222Rn count rate from the control well between 24.01.2020-27.07.2020.

Жүктеу (252KB)
7. Fig. 6. Schematic diagram of underground structures of BNO INR RAS. Point (1) corresponds to the pointer "Near NF", point (2) - "MSU GAISH Laser Interferometer", point (3) - "OGRAN", point (4) - "Far NF".

Жүктеу (410KB)
8. Fig. 7. Variations of 222Rn count rate in the air flow in the Main adit: (0 m) - outside air; (1) - Nika (400 m from the entrance), (3) - OGRAN (1420 m), (4) - NLGZ-4900 (3700 m). The upper dependence was obtained on the M1 monitor, the lower one - on the M2 monitor.

Жүктеу (375KB)
9. Fig. 8. Variation of 222Rn content in the air along the Main adit.

Жүктеу (177KB)
10. Fig. 9. Emission spectrum from the water sample (1) compared to the detector background spectrum (2).

Жүктеу (278KB)
11. Fig. 10. Time dependence of 222Rn content in the air of the "Main" adit at a distance of 620 m from the entrance (point (2)). Start of measurements - 16.03.2021.

Жүктеу (363KB)

© Russian Academy of Sciences, 2024