Variations of 222Rn Content in Above- and Underground Conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article presents the results of measuring 222Rn activity and its daughter decay products in the air of underground laboratories of Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (BNO INR RAS) at different distances from the entrance. The measurements were carried out with a cylindrical air pulse ionization chamber. It has been shown that the radon content in the flow of ventilated air, within the measurement accuracy, does not depend on the length of the path traveled, but increases abruptly in the locations of sources of underground gas and water emissions. Various mechanisms of air enrichment with radon are considered. The research methodology is presented, and the results of measurements of radon emission from the rocky soil of the walls of an underground room are presented. The results of measuring the radon content in water from various above- and underground sources using a low-background gamma spectrometer based on a semiconductor detector (SCD) made of ultrapure germanium are presented.

全文:

受限制的访问

作者简介

Yu. Gavrilyuk

Institute for Nuclear Research of the Russian Academy of Sciences

Email: gangapsh@list.ru
俄罗斯联邦, Moscow, 117312

A. Gangapshev

Institute for Nuclear Research of the Russian Academy of Sciences; Kabardino-Balkarian State University

编辑信件的主要联系方式.
Email: gangapsh@list.ru
俄罗斯联邦, Moscow, 117312; Nalchik, 360004

A. Gezhaev

Institute for Nuclear Research of the Russian Academy of Sciences

Email: gangapsh@list.ru
俄罗斯联邦, Moscow, 117312

V. Kazalov

Institute for Nuclear Research of the Russian Academy of Sciences

Email: gangapsh@list.ru
俄罗斯联邦, Moscow, 117312

V. Kuzminov

Institute for Nuclear Research of the Russian Academy of Sciences; Kabardino-Balkarian State University

Email: gangapsh@list.ru
俄罗斯联邦, Moscow, 117312; Nalchik, 360004

A. Khokonov

Institute for Nuclear Research of the Russian Academy of Sciences; Adyghe State University

Email: gangapsh@list.ru
俄罗斯联邦, Moscow, 117312; Maykop, 385000

R. Etezov

Institute for Nuclear Research of the Russian Academy of Sciences

Email: gangapsh@list.ru
俄罗斯联邦, Moscow, 117312

参考

  1. Езимова Ю.Е., Удоратин В.В., Магомедова А.Ш. Четдинская радоновая аномалия (республика Коми): локализация и изучение // Геофизические исследования. 2022. Т. 23. № 4. С. 36–54.
  2. Моллаева М.З., Темботова Ф.А., Гангапшев А.М., Казалов В.В., Гежаев А.М. Содержание радионуклидов в хвое Pinus sylvestris L. в условиях Карачаево-Черкесской республики (Западный Кавказ) // Радиационная биология. Радиоэкология. 2023. Т. 63. № 4. С. 403–410.
  3. Удоратин В.В., Езимова Ю.Е., Магомедова А.Ш. Методика измерений объемной активности радона для платформенных областей // Физика Земли. 2020. № 4. С. 132–143.
  4. Amaré J., Bandac I., Blancas A., Borjabad S., Buisán, S. Cebrián S., Cintas D., Coarasa I., García E., Martínez M., Núñez–Lagos R., Oliván M.A., Ortigoza Y., Ortiz de Solórzano A., Pérez C., Puimedóna J., Rodríguez S., Salinas A., Sarsa M.L., Villar P. Long term measurement of the 222 Rn concentration in the Canfranc Underground Laboratory. arXiv:2203.13978v1 [physics.ins-det] 26 Mar 2022.
  5. Li Chunqian, Zhao Shibin, Zhang Chenglun, Li Meng, Guo Jinjia, Dimova Natasha T., Yang Tong, Liu Wen, Chen Guangquan, Yu Huaming, Xu Bochao. Further refinements of a continuous radon monitor for surface ocean water measurements // Front. Mar. Sci. 2022. № 9. P. 1047126.
  6. Chu M.C., Kwan K.K., Kwok M.W., Kwok T., Leung J.K.C., Leung K.Y., Lin Y.C., Luk K.B., Pun C.S.J. The radon monitoring system in Daya Bay Reactor Neutrino Experiment // Nuclear Instruments and Methods in Physics Research A. 2016. V. 808. P. 156–164.
  7. Gavrilyuk Yu.M., Gangapshev A.M., Kuzminov V.V., Panasenko S.I., Ratkevich S.S. Monitoring the 222Rn Concentration in the Air of Low-Background Laboratories by Means of an Ion-Pulse Ionization Chamber // Bulletin of the Russian Academy of Sciences. Physics. 2011. V. 75. № 4. P. 547–551.
  8. Gavrilyuk Yu.M., Gangapshev A.M., Gezhaev A.M., Etezov R.A., Kazalov V.V., Kuzminov V.V., Panasenko S.I., Ratkevich S.S., Tekueva D.A., Yakimenko S.P. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection // Nucl. Instrum. and Meth. A. 2015. V. 801. P. 27–33.
  9. Gavriljuk Yu.M., Gangapshev A.M., Gezhaev A.M., Kazalov V.V., Kuzminov V.V., Panasenko S.I., Ratkevich S.S., Smolnikov A.A., Yakimenko S.P. Working characteristics of the New Low-Background Laboratory (DULB-4900) // Nucl. Instrum. and Meth. A. 2013. V. 729. P. 576–580.
  10. Kuzminov V.V. Ion-pulse ionization chamber for direct measurement of a radon concentration in the air // Physics of Atomic Nuclei. 2003. V. 66. № 3. P. 462–465.
  11. Kuzminov V.V. The Baksan Neutrino Observatory // Eur. Phys. J. Plus. 2012. V. 127. P. 113.
  12. Lagios E., Sideris G., Zervos F., Tsourlos P., Nicholson R.A., Ponomarev A., Salov B., Balassanian S., Petrosyan G., Bushati S., Lika O. Tectonic early warning system through real-time radon (Rn) monitoring: preliminary results of geophysical method for forecasting earthquakes. Earthquake Hazard and Seismic Risk Reduction. Kluwer Academic Publishers. 2000. P. 261–270.
  13. Zafrir Hovav, Barbosa Susana, Levintal Elad, Weisbrod Noam, Yochai Ben Horin and Zalevsky Zeev. The Impact of Atmospheric and Tectonic Constraints on Radon-222 and Carbon Dioxide Flow in Geological Porous Media – A Dozen-Year Research Summary // Front. Earth Sci. 2020. № 8. P. 559298.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Block diagram of the monitor for radon content control in the air on the basis of cylindrical air pulse ionisation chamber: CVIC - ionisation chamber, ZSU - charge-sensitive preamplifier, HVI - high-voltage power supply, PC - personal computer, ARD - software-relay control board ARDUINO, DSP - digital oscilloscope LA-n10-12PCI, AC - air compressor.

下载 (161KB)
3. Fig. 2. Example of the reconstructed amplitude spectrum of pulses accumulated for 179 minutes in measurements of radon content in the air of the ground room.

下载 (167KB)
4. Fig. 3. Example of separation of the amplitude spectrum into substrate and peaks.

下载 (178KB)
5. Fig. 4. Variations of 222Rn count rate in one of the rooms of the ground-based laboratory between 28 August and 16 September 2020.

下载 (315KB)
6. Fig. 5. Variations in 222Rn count rate from the control well between 24.01.2020-27.07.2020.

下载 (252KB)
7. Fig. 6. Schematic diagram of underground structures of BNO INR RAS. Point (1) corresponds to the pointer "Near NF", point (2) - "MSU GAISH Laser Interferometer", point (3) - "OGRAN", point (4) - "Far NF".

下载 (410KB)
8. Fig. 7. Variations of 222Rn count rate in the air flow in the Main adit: (0 m) - outside air; (1) - Nika (400 m from the entrance), (3) - OGRAN (1420 m), (4) - NLGZ-4900 (3700 m). The upper dependence was obtained on the M1 monitor, the lower one - on the M2 monitor.

下载 (375KB)
9. Fig. 8. Variation of 222Rn content in the air along the Main adit.

下载 (177KB)
10. Fig. 9. Emission spectrum from the water sample (1) compared to the detector background spectrum (2).

下载 (278KB)
11. Fig. 10. Time dependence of 222Rn content in the air of the "Main" adit at a distance of 620 m from the entrance (point (2)). Start of measurements - 16.03.2021.

下载 (363KB)

版权所有 © Russian Academy of Sciences, 2024