The Limits of Applicability of the Gutenberg–Richter Law in the Problems of Seismic Hazard and Risk Assessment
- Autores: Krushelnitskii K.V.1, Shebalin P.N.1,2, Vorobieva I.A.1,2, Selyutskaya O.V.1, Antipova A.O.1,2
-
Afiliações:
- Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
- Geophysical Center, Russian Academy of Sciences
- Edição: Nº 5 (2024)
- Páginas: 69-84
- Seção: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/658153
- DOI: https://doi.org/10.31857/S0002333724050058
- EDN: https://elibrary.ru/EJZGGD
- ID: 658153
Citar
Texto integral
Resumo
The Gutenberg–Richter law establishes a log-linear relationship between the number of earthquakes that have occurred within some spatiotemporal volume and their magnitude. This similarity property presumably reflects fractal structure of the fault system in which earthquake sources are formed. The Gutenberg–Richter law plays a key role in the problems of seismic hazard and risk assessment. Using the Gutenberg–Richter relationship, we can estimate the average recurrence period of strong earthquakes from the recurrence rate of weaker earthquakes. Since the strongest earthquakes occur infrequently, with intervals of a few hundred years or more, it is not possible to directly assess their recurrence. From indirect geologic and paleoseismic estimates it often seems that strong earthquakes on individual faults occur more frequently than expected in accordance with the Gutenberg–Richter law. Such estimates underlie the hypothesis of the so called characteristic earthquakes. This hypothesis is in many cases additionally supported by the form of the magnitude–frequency distributions for individual faults, constructed from the data of modern earthquake catalogs. At the same time, an important factor affecting the form of the magnitude–frequency distribution is the choice of the spatial domain in which the distribution is constructed. This paper investigates the influence of this factor and determines the conditions under which the Gutenberg–Richter law is applicable for estimating the recurrence of strong earthquakes.
Sobre autores
K. Krushelnitskii
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: kirillkrush@mail.ru
Rússia, Moscow, 117997
P. Shebalin
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Geophysical Center, Russian Academy of Sciences
Email: kirillkrush@mail.ru
Rússia, Moscow, 117997; Moscow, 119296
I. Vorobieva
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Geophysical Center, Russian Academy of Sciences
Email: kirillkrush@mail.ru
Rússia, Moscow, 117997; Moscow, 119296
O. Selyutskaya
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: kirillkrush@mail.ru
Rússia, Moscow, 117997
A. Antipova
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Geophysical Center, Russian Academy of Sciences
Email: kirillkrush@mail.ru
Rússia, Moscow, 117997; Moscow, 119296
Bibliografia
- Гвишиани А.Д., Соловьев А.А., Дзебоев Б.А. Проблема распознавания мест возможного возникновения сильных землетрясений: актуальный обзор // Физика Земли. 2020. № 1. С. 5–29. doi: 10.31857/S0002333720010044
- Голицын Г.С. Место закона Гутенберга–Рихтера среди других статистических законов природы. Проблемы динамики литосферы и сейсмичности. М.: ГЕОС. 2001. (Вычислительная сейсмология; Вып. 32). С. 138–161.
- Ризниченко Ю.В. От активности очагов землетрясений к сотрясаемости земной поверхности // Изв. АН СССР. Сер. Физика Земли. 1965. № 11. С. 1–12.
- Садовский М.А., Писаренко В.Ф. Сейсмический процесс в блоковой среде. М.: Наука. 1991. 96 с.
- Тихоцкий С.А., Татевосян Р.Э., Ребецкий Ю.Л., Овсюченко А.Н., Ларьков А.С. Караманмарашские землетрясения 2023 г. в Турции: сейсмическое движение по сопряженным разломам // Докл. РАН. Науки о Земле. 2023. Т. 511. № 2. С. 228–235.
- Уломов В.И., Шумилина Л.С. Комплект карт общего сейсмического районирования территории Российской Федерации – ОСР-97. Масштаб 1:8 000 000. Объяснительная записка и список городов и населенных пунктов, расположенных в сейсмоопасных районах. М.: ОИФЗ. 1999. 57 с.
- Федотов С.А. Закономерности распределения сильных землетрясений Камчатки, Курильских островов и Северо-Восточной Японии. Сейсмическое микрорайонирование. Вопросы инженерной сейсмологии. Вып. 10. Труды ИФЗ АН СССР. № 36 (203). М.: Наука. 1965. С. 66–93.
- Шебалин П.Н., Гвишиани А.Д., Дзебоев Б.А., Скоркина А.А. Почему необходимы новые подходы к оценке сейсмической опасности? // Докл. РАН. Науки о Земле. 2022. Т. 507. № 1. С. 91–97.
- Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products. U.S. Geological Survey, Earthquake Hazards Program. 2023. doi: 10.5066/F7MS3QZH (Accessed November 19, 2023).
- Aki K. A probabilistic synthesis of precursory phenomena. Earthquake Prediction: An International Review / D.W. Simpson, P.G. Richards (eds.). 1981. V. 4. P. 566–574.
- Bender B. Maximum likelihood estimation of b-values for magnitude grouped data // Bulletin of the Seismological Society of America. 1983. V. 73. P. 831–851.
- Ben-Zion Y. Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes and different dynamic regimes // Rev. Geophys. 2008. doi: 10.1029/2008RG000260
- Cornell C.A. Engineering seismic risk analysis // Bulletin of the Seismological Society of America. 1968. V. 58. Is. 5. P. 1583–1606.
- Field E.H., Arrowsmith R.J., Biasi G.P., Bird P., Dawson T.E., Felzer K.R., Jackson D.D., Johnson K.M., Jordan T.H., Madden C., Michael A.J., Milner K.R., Page M.,Parsons T., Powers P.M., Shaw B.E., Thatcher W.R., Weldon R.J., Zeng Y. Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time‐Independent Model // Bulletin of the Seismological Society of America. 2014. V. 104. № 3. P. 1122–1180. doi: 10.1785/0120130164
- Geller R.J., Mulargia,F. Stark P.B. Why We Need a New Paradigm of Earthquake Occurrence. Subduction Dynamics: From Mantle Flow to Mega Disasters / G. Morra, D.A. Yuen, S.D. King, S.-M. Lee, S. Stein (eds.). 2015. P. 183–191. doi: 10.1002/9781118888865.ch10
- Gerstenberger M.C., Marzocchi W., Allen T., Pagani M., Adams J., Danciu L. et al. Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges // Reviews of Geophysics. 2020. V. 58. e2019RG000653. doi: 10.1029/2019RG000653
- Gvishiani A.D., Vorobieva I.A., Shebalin P.N., Dzeboev B.A., Dzeranov B.V., Skorkina A.A. Integrated Earthquake Catalog of the Eastern Sector of the Russian Arctic // Appl. Sci. 2022. V. 12. P. 5010. doi: 10.3390/app12105010
- Di Giacomo D., Bondár I., Storchak D.A., Engdahl E.R., Bormann P., Harris J. ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment // Phys. Earth Planet. Inter. 2015. V. 239. P. 33–47.
- Ekström G., Nettles M., Dziewoński A.M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes // Physics of the Earth and Planetary Interiors. 2012. V. 200–201. P. 1–9. doi: 10.1016/j.pepi.2012.04.002
- Hirata T. A correlation between the b-value and the fractal dimension of earthquakes // J. Geophys. Res. 1989. V. 94B. P. 7507–7514.
- Howell B.F. Jr. On the effect of too small a data base on earthquake frequency diagrams // Bull. Seismol. Soc. Am. 1985. V. 75. P. 1205–1207.
- Ishibe T. and Shimazaki K. Characteristic Earthquake Model and Seismicity around Late Quaternary Active Faults in Japan // Bulletin of the Seismological Society of America. 2012. V. 102. No. 3. P. 1041–1058. doi: 10.1785/0120100250
- Kagan Y.Y., Jackson D.D., Geller R.J. Characteristic Earthquake Model, 1884–2011, R.I.P. // Seismological Research Letters. 2012. V. 83. № 6. P. 951–953. doi: 10.1785/0220120107
- Kanamori H., Anderson D. Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am. 1975. V. 65. № 5. P. 1073–1095.
- King G. The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-value // Pure Appl. Geophys. 1983. V. 121. P. 761–815.
- Mogi K. Some features of recent seismic activity in and near Japan // Bull. Earthq. Res. Inst., Univ. Tokyo. 1968. V. 46. P. 1225–1236.
- Molchan G., Kronrod T., Panza G. Multi-scale seismicity model for seismic risk // Bull. Seismol. Soc. Am. 1997. V. 87. № 5. P. 1220–1229. doi: 10.1785/BSSA0870051220
- Mulargia F., Gasperini P. Evaluation of the applicability of the time-and slip-predictable earthquake recurrence models to Italian seismicity // Geophys. J. Int. 1995. V. 120. P. 453–473.
- Okubo P.G., Aki K. Fractal geometry in the San Andreas fault system // J. Geophys. Res. 1992. V. 92. P. 345–355.
- Page M.T., Felzer T. Southern San Andreas fault seismicity is consistent with the Gutenberg–Richter magnitude–frequency distribution // Bulletin of the Seismological Society of America. 2015. V. 105. № 4. P. 2070–2080. doi: 10.1785/0120140340
- Pisarenko V.F., Rodkin M.V. Approaches to Solving the Maximum Possible Earthquake Magnitude (Mmax) Problem // Surveys in Geophysics. 2022. V. 43. № 2. P. 561–595. doi: 10.1007/s10712-021-09673-1
- Romanowicz B. Strike-slip earthquakes on quasi-vertical transcurrent faults: inferences for general scaling relations // Geophysical Research Letters. 1992. V. 19. P. 481–484. doi: 10.1029/92Gl00265
- Scholz C.H. Evidence for a strong San Andreas fault // Geology. 2000. V. 28. P. 163–166.
- Schwartz D.P., Coppersmith K.J. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research. 1984. V. 89(B7). P. 5681–5698.
- Shebalin P.N., Baranov S.V., Vorobieva I.A. et al. Seismicity Modeling in Tasks of Seismic Hazard Assessment // Dokl. Earth Sc. 2024. doi: 10.1134/S1028334X23603115
- Shebalin P., Narteau C. Depth dependent stress revealed by aftershocks // Nature Communications. 2017. V. 8. № 1. P. 1317.
- Shebalin P., Narteau C., Holschneider M. From alarm-based to rate-based earthquake forecast models // Bulletin of the Seismological Society of America. 2012. V. 102. № 1. P. 64–72.
- Shebalin P.N., Narteau C., Zechar J.D., Holschneider M. Combining earthquake forecasts using differential probability gains // Earth, Planets and Space. 2014. V. 66. № 1. P. 35.
- Shebalin P.N., Narteau C., Baranov S.V. Earthquake productivity law // Geophysical Journal International. 2020. V. 222. Is. 2. P. 1264–126913. doi: 10.1093/gji/ggaa252
- Shebalin P., Baranov S., Vorobieva I. Earthquake Productivity Law in a Wide Magnitude Range // Frontiers in Earth Science. 2022. V. 10. P. 881425. doi: 10.3389/feart.2022.881425
- The Seismological Bulletin of Japan. Japan Meteorological Agency. 2023. https:// www.data.jma.go.jp/svd/eqev/data/bulletin/index_e.html (Accessed 10 January 2023).
- Stein S., Geller R.J., Liu M. Why earthquake hazard maps often fail and what to do about it // Tectonophysics. 2012. V. 562–563. P. 1–25. doi: 10.1016/j.tecto.2012.06.047
- Stirling M.W., Zuniga F.R. Shape of the magnitude–frequency distribution for the Canterbury earthquake sequence from integration of seismological and geological data // Bulletin of the Seismological Society of America. 2017. V. 107. № 1. P. 495–500. doi: 10.1785/0120160246
- Sykes L.R. Aftershock zones of great earthquakes, seismicity gaps and earthquake prediction for Alaska and the Aleutians // J. Geophys. Res. 1971. V. 76. P. 8021–8041.
- Tsuboi C. Earthquake Energy, Earthquake Volume, Aftershock Area, and Strength of the Earth’s Crust // Journal of Physics of the Earth. 1956. V. 4. P. 63–66.
- Turcotte D.L. Fractals and Chaos in Geology and Geophysics. 2. Cambridge: Cambridge Univ. Press. 1997. 386 p.
- Ulomov V.I. Seismic hazard of Northern Eurasia // Annali di Geofisica. 1999. V. 42. Is. 6. P. 1023–1038.
- Vorobieva I., Shebalin P., Narteau C. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system // Geophys. Res. Lett. 2016. V. 43. № 13. P. 6869–6875. doi: 10.1002/2016GL069636
- Vorobieva I., Narteau C., Shebalin P., Beauducel F., Nercessian A., Clouard V., Bouin M.P. Multiscale Mapping of Completeness Magnitude of Earthquake Catalogs // Bulletin of the Seismological Society of America. 2013. V. 103. P. 2188–2202. doi: 10.1785/0120120132
- Wells D.L., Coppersmith K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement // Bull. Seism. Soc. Am. 1994. V. 84.4. P. 974–1002.
- Wesnousky S.G. Crustal deformation processes and the stability of the Gutenberg‐Richter relationship // Bulletin of the Seismological Society of America. 1999. V. 89. № 4. P. 1131–1137.
- Wyss M., Nekrasova A., Kossobokov V. Errors in expected human losses due to incorrect seismic hazard estimates // Natural Hazards. 2012. V. 62. Is. 3. P. 927–935.
- Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2847–2864. doi: 10.1002/jgrb.50179
- Zoback M.D., Zoback M.L., Eaton J.P., Mount V.S, Suppe J., Healy J.H, Oppenheimer D., Reasenberg P., Jones L., Raleigh C.B., Wong I.G., Scotti O., Wentworth C. New evidence on the state of stress of the San Andreas fault system // Science. 1987. V. 238. P. 1105–1111.
- Zoback M., Hickman S., Ellsworth W., SAFOD Science Team. Scientific drilling into the San Andreas fault zone—an overview of SAFOD’s first five years // Scientific Drilling. 2011. V. 11. P. 14–28.
Arquivos suplementares
