Asymptotics of Branching of Families of the Least Stable Magnetic Modes of the Bloch Type

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A Bloch mode is a vector field that is the product of a three-dimensional field of the flow periodicity, and a Fourier harmonic eiqx for an arbitrary wave vector q. Previous computations showed that the modes whose growth rates are maximum over all vectors q are arranged in families, which are smoothly parameterised by the molecular magnetic diffusivity. In some families, the growth rates assume the maximum for the so-called half-integer q, whose all components are integer or half-integer, and q is constant for the entire family. From such families, other families can stem, in which the optimal q of the modes varies smoothly over a family. For the modes comprising such offshoot families, the associated eigenvalues of the magnetic induction operator and the optimal q, we construct here asymptotic expansions in power series in the parameter ϑ=(η0η)1/2, where η0 is the magnetic diffusivity for which the branching occurs. In this paper, we assume that the modes in the family undergoing the branching involve a constant non-zero half-integer wave vector q. The asymptotic expansions differ significantly from the similar expansions that we constructed earlier for the branching from a family of short-scale (i.e., for q=0) neutral (associated with a zero eigenvalue of the magnetic induction operator) magnetic modes generated by a parity-invariant flow.

Texto integral

Acesso é fechado

Sobre autores

V. Zheligovsky

Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: vlad@mitp.ru
Rússia, Moscow, 117997

Bibliografia

  1. Арнольд В.И., Зельдович Я.Б., Рузмайкин А.А., Соколов Д.Д. Стационарное магнитное поле в периодическом потоке // Докл. АН СССР. 1982. Т. 266. С. 1357–1351.
  2. Желиговский В.А. Математическая теория устойчивости магнитогидродинамических режимов к длинномасштабным возмущениям. М.: Красанд–УРСС. 2010. 352 c.
  3. Желиговский В.А., Чертовских Р.А. О кинематической генерации магнитных мод блоховского типа // Физика Земли. 2020. № 1. C. 118–132. (Перевод на англ.: Zheligovsky V.A., Chertovskih R.A. On kinematic generation of the magnetic modes of Bloch type // Izvestiya, Physics of the Solid Earth. 2020. V. 56. P. 103–116.)
  4. Краузе Ф., Рэдлер К.-Х. Магнитная гидродинамика средних полей и теория динамо. М.: Мир. 1984. 320 с. (Пер. с англ.: Krause F., Rädler K.-H. Mean-field magnetohydrodynamics and dynamo theory. Berlin: Academic-Verlag. 1980. 271 p.)
  5. Bloch F. Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik A // Hadrons and Nuclei. 1929. V. 52. P. 555–600.
  6. Chertovskih R., Zheligovsky V. Linear perturbations of the Bloch type of space-periodic magnetohydrodynamic steady states. I. Mathematical preliminaries // Russian J. of Earth Sciences. 2023a. V. 23. ES3001. doi: 10.2205/2023es000834
  7. Chertovskih R., Zheligovsky V. Linear perturbations of the Bloch type of space-periodic magnetohydrodynamic steady states. II. Numerical results // Russian J. of Earth Sciences. 2023b. V. 23. ES4004. doi: 10.2205/2023es000838
  8. Chertovskih R., Zheligovsky V. Linear perturbations of the Bloch type of space-periodic magnetohydrodynamic steady states. III. Asymptotics of branching // Russian J. of Earth Sciences. 2023c. V. 23. ES5004. doi: 10.2205/2023es000841
  9. Rädler K.-H. Mean-field dynamo theory: early ideas and today’s problems. Magnetohydrodynamics. Historical evolution and trends. Fluid mechanics and its applications. V. 80 / Molokov S., Moreau R., Moffatt K. (eds.). Springer. 2007. P. 55–72.
  10. Zheligovsky V.A. Large-scale perturbations of magnetohydrodynamic regimes: linear and weakly nonlinear stability theory. Lecture Notes in Physics. V. 829. Heidelberg: Springer-Verlag. 2011. 330 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024