Численное исследование явления возникновения сейсмической подвижки на разломе в результате закачки флюида

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается вопрос возникновения сейсмичности, индуцированной закачкой флюида в недра. Представлена модель вложенных трещин, позволяющая моделировать процесс фильтрации флюида в породе, содержащей трещины или разломы, с учетом изменения фильтрационных свойств последних в процессе изменения порового давления. Процесс деформации разлома описывается с использованием метода разрывных смещений. Модель применяется для анализа влияния закачки флюида в непосредственной близости от разлома на его последующую деформацию. Исследуется переход подвижек разлома от асейсмических к сейсмическим при изменении параметров закона трения или параметров закачки флюида. Найдены условия, при которых в рамках предложенной модели возможно возникновение сейсмических подвижек.

Об авторах

В. Ю. Рига

Всероссийский научно-исследовательский институт автоматики имени Н.Л. Духова

Автор, ответственный за переписку.
Email: rigavu92@gmail.com
Россия, г. Москва

С. Б. Турунтаев

Всероссийский научно-исследовательский институт автоматики имени Н.Л. Духова; Институт динамики геосфер имени академика М.А. Садовского РАН; Московский физико-технический институт

Email: stur@idg.ras.ru
Россия, г. Москва; г. Москва; г. Москва

Список литературы

  1. Гридин Г.А., Кочарян Г.Г., Морозова К.Г. и др. Развитие процесса скольжения по гетерогенному разлому. Крупномасштабный лабораторный эксперимент // Физика Земли. 2023. № 3. С. 139–147. doi: 10.31857/S0002333723030043
  2. Кочарян Г.Г., Спивак А.А. Динамика деформирования блочных массивов горных пород. М.: Академкнига. 2003. 422 c. ISBN 5-94628-078-3.
  3. Рига В.Ю., Турунтаев С.Б., Остапчук А.А. Численное моделирование сейсмогенерирующих подвижек на основе модели rate-state экспериментов межблокового скольжения // Динамические процессы в геосферах. 2018. № 10. С. 99–109. doi: 10.26006/IDG.2018.10.20183
  4. Barbour A., Norbeck J., Rubinstein J. The Effects of Varying Injection Rates in Osage County, Oklahoma, on the 2016 Mw 5.8 Pawnee Earthquake // Seismological Research Letters. 2017. V. 88. № 4. P. 1040–1053. doi: 10.1785/0220170003
  5. Ben-Zion Y., Rice J. Dynamic simulations of slip on a smooth fault in an elastic solid // J. Geophys. Res. 1997. V. 102. № B8. P. 17771–17784. doi: 10.1029/97JB01341
  6. Cappa F., Guglielmi Y., De Barros L. Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization // Nat Commun. 2022. V. 13. P. 30–39. https://doi.org/10.1038/s41467-022-30798-3
  7. Cappa F., Guglielmi Y., Nussbaum C., Birkholzer J. On the relationship between fault permeability increases, induced stress perturbation, and the growth of aseismic slip during fluid injection // Geophysical Research Letters. 2018. V. 45. № 11. P. 11012–11020.
  8. Carpenter B.M., Collettini C., Viti C., Cavallo A. The influence of normal stress and sliding velocity on the frictional behavior of calcite at room temperature: insights from laboratory experiments and microstructural observations // Geophysical Journal International. 2016. V. 205. № 1. P. 548–561. https://doi.org/10.1093/gji/ggw038
  9. Carpenter B.M., Saffer D.M., Marone C. Frictional properties of the active San Andreas Fault at SAFOD: Implications for fault strength and slip behavior // Journal of Geophysical Research: Solid Earth. 2015. V. 120. № 7. P. 5273–5289.
  10. Carpenter B.M., Scuderi M.M., Collettini C. et al. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy // Journal of Geophysical Research: Solid Earth. 2014. V. 119. № 12. P. 9062–9076.
  11. Gaucher E., Schoenball M., Heidbach O., Zang A., Fokker P.A., van Wees J.-D., Kohl T. Induced seismicity in geothermal reservoirs: A review of forecasting approaches // Renewable and Sustainable Energy Reviews. 2015. V. 52. P. 1473–1490. doi: 10.1016/j.rser.2015.08.026
  12. Grigoli F., Cesca S., Rinaldi A.P. et al. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea // Science. 2018. V. 360. № 6392. P. 1003–1006.
  13. Gu J-C., Rice J.R., Ruina A.L., Tse S.T. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction // Apl. Mech. Phys. Solids. 1984. V. 32. № 3. P. 167–196.
  14. Guglielmi Y., Cappa F., Avouac J.-P., et al. Seismicity triggered by fluid injection-induced aseismic slip // Science. 2015. V. 348. № 6240. P. 1224–1226.
  15. Haring M., Schanz U., Dyer B. Characterization of the Basel 1 enhanced geothermal system // Geothermics. 2008. V. 37. № 5. P. 469–495. doi: 10.1016/j.geothermics.2008.06.002
  16. Hincks T., Aspinall W., Cooke R. et al. Oklahoma’s induced seismicity strongly linked to wastewater injection depth // Science. 2018. V. 359. № 6381. P. 1251–1255.
  17. Johann L., Shapiro S.A., Dinske C. The surge of earthquakes in Central Oklahoma has features of reservoir-induced seismicity // Scientific Reports. 2018. V. 8. № 1.
  18. Lee H.S., Cho T.F. Hydraulic characteristics of rough fractures in linear flow under normal and shear load // Rock Mech. Rock Eng. 2002. V. 35. № 4. P. 299–318.
  19. Li L., Lee S.H. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media // SPE Reserv. Eval. Eng. 2008. V. 11. № 4. P. 750–758.
  20. Lie K.-A. An introduction to reservoir simulation using MATLAB: User Guide for the Matlab Reservoir Simulation Toolbox (MRST). SINTED ICT. 2016. 392 p.
  21. McClure M.W. Modeling and characterization of hydraulic stimulation and induced seismicity in geothermal and shale gas reservoirs: Doctoral dissertation. Stanford University. 2012. 369 p.
  22. McGarr A. Maximum magnitude earthquakes induced by fluid injection // Journal of Geophysical Research: Solid Earth. 2014. V. 119. № 2. P. 1008–1019.
  23. McGarr A., Bekins B., Burkardt N. et al. Coping with earthquakes induced by fluid injection // Science. 2015. V. 347. № 6224. P. 830–831.
  24. Mortezaei K., Vahedifard F. Multi-scale simulation of thermal pressurization of fault fluid under CO2 injection for storage and utilization purposes // International Journal of Rock Mechanics and Mining Sciences. 2017 V. 98. P. 111–120.
  25. Noda H., Dunham E.M., Rice J.R. Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels // Journal of Geophysical Research: Solid Earth. American Geophysical Union (AGU). 2019. V. 114. № B7. https://doi.org/10.1029/2008jb006143
  26. Norbeck J., Horne R. Injection-Triggered Seismicity: An Investigation of Porothermoelastic Effects Using a Rate-and-State Earthquake Model. PROCEEDINGS, Fourtieth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26-28, 2015. SGP-TR-204.
  27. Norbeck J., McClure M., Horne R. Revisiting Stimulation Mechanism at Fenton Hill and an Investigation of the Influence of Fault Heterogeneity on the Gutenberg-Richter b-value for Rate-and-State Earthquake Simulation. PROCEEDINGS, 41st Workshop on Geothermal Reservoir Engineering Stanford University. Stanford, California. February 22-24, 2016. SGP-TR-209.
  28. Norbeck J., McClure M., Lo J., Horne R. An embedded fracture modeling framework for simulation of hydraulic fracturing and shear stimulation // Computational Geosciences. 2015. V. 20(1). P. 1–18. doi: 10.1007/s10596-015-9543-2
  29. Norbeck J., Horne R.N. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults // Tectonophysics. 2018. V. 733. P. 108–118. DOI: https://doi.org/10.1016/j.tecto.2018.01.028
  30. Okazaki K., Katayama I. Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes // Geophysical Research Letters. 2015. V. 42. № 4. P. 1099–1104.
  31. Riga V., Turuntaev S. Induced Seismicity Modeling Based on Two-Parameter Rate-and-State Law // Izvestiya, Physics of the Solid Earth. 2021. V. 57. № 5. P. 627–643. doi: 10.1134/S1069351321050153
  32. Riga V., Turuntaev S. Modeling of fault deformation driven by fluid injection // Trigger effects in Geosystems, Springer Proceedings in Earth and Enviromental Sicences, Springer, Cham. 2019. P. 279–288. doi: 10.1007/978-3-030-317970-0_30
  33. Rubinstein J.L., Mahani A.B. Myths and Facts on Wastewater Injection, Hydraulic Fracturing, Enhanced Oil Recovery, and Induced Seismicity // Seismological Research Letters. 2015. V. 86. № 4. P. 1060–1067.
  34. Ruiz-Barajas S., Sharma N., Convertito V. et al. Temporal evolution of a seismic sequence induced by a gas injection in the Eastern coast of Spain // Scientific Reports. 2017. V. 7. P. 2901.
  35. Scuderi M.M., Collettini C. The role of fluid pressure in induced vs. triggered seismicity: insights from rock deformation experiments on carbonates // Scientific Reports. 2016. V. 6. P. 24852.
  36. Scuderi M.M., Collettini C. Fluid Injection and the Mechanics of Frictional Stability of Shale-Bearing Faults // Journal of Geophysical Research: Solid Earth. 2018. V. 123. № 10. P. 8364–8384.
  37. Shou K.J., Crouch S.L. A higher order displacement discontinuity method for analysis of crack problems // International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1995. V. 32. № 1. P. 49–55.
  38. Turuntaev S.B., Riga V.Y. Non-linear effects of pore pressure increase on seismic event generation in a multi-degree-of-freedom rate-and-state model of tectonic fault sliding // Nonlinear Processes in Geophysics. 2017. V. 24. № 2. P. 215–225. doi: 10.5194/npg-24-215-2017
  39. Weingarten M., Ge S., Godt J.W. et al. High-rate injection is associated with the increase in U.S. mid-continent seismicity // Science. 2015. V. 348. № 6241. P. 1336–1340.
  40. Witherspoon P.A., Wang J.S.Y., Iwai K., Gale J. E. Validity of Cubic Law for fluid flow in a deformable rock fracture // Water Resour. Res. 1980. V. 16. № 6. P. 1016–1024. doi: 10.1029/WR016i006p01016

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024