A Numerical Study of the Phenomenon of Seismic Slip on a Fault as a Result of Fluid Injection
- Авторлар: Riga V.Y.1, Turuntaev S.B.1,2,3
-
Мекемелер:
- Dukhov All-Russian Research Institute of Automation
- Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Шығарылым: № 5 (2024)
- Беттер: 157-172
- Бөлім: Articles
- URL: https://journals.eco-vector.com/0002-3337/article/view/658159
- DOI: https://doi.org/10.31857/S0002333724050113
- EDN: https://elibrary.ru/EJNLOR
- ID: 658159
Дәйексөз келтіру
Толық мәтін
Аннотация
The issue of the occurrence of seismicity induced by injection of fluid into the subsurface is considered. A model of nested fractures is presented, which allows simulating the process of fluid filtration in a rock containing fractures or faults, taking into account the change in the filtration properties of the latter during the change in pore pressure. The process of fault deformation is described using the displacement discontinuity method. The model is used to analyze the effect of fluid injection in the immediate vicinity of a fault on its subsequent deformation. The transition of fault slip from aseismic to seismic is investigated when the parameters of the friction law or fluid injection parameters change. Conditions have been found under which seismic slip may occur within the framework of the proposed model.
Негізгі сөздер
Авторлар туралы
V. Riga
Dukhov All-Russian Research Institute of Automation
Хат алмасуға жауапты Автор.
Email: rigavu92@gmail.com
Ресей, Moscow, 127055
S. Turuntaev
Dukhov All-Russian Research Institute of Automation; Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Email: stur@idg.ras.ru
Ресей, Moscow, 127055; Moscow, 119334; Moscow, 141701
Әдебиет тізімі
- Гридин Г.А., Кочарян Г.Г., Морозова К.Г. и др. Развитие процесса скольжения по гетерогенному разлому. Крупномасштабный лабораторный эксперимент // Физика Земли. 2023. № 3. С. 139–147. doi: 10.31857/S0002333723030043
- Кочарян Г.Г., Спивак А.А. Динамика деформирования блочных массивов горных пород. М.: Академкнига. 2003. 422 c. ISBN 5-94628-078-3.
- Рига В.Ю., Турунтаев С.Б., Остапчук А.А. Численное моделирование сейсмогенерирующих подвижек на основе модели rate-state экспериментов межблокового скольжения // Динамические процессы в геосферах. 2018. № 10. С. 99–109. doi: 10.26006/IDG.2018.10.20183
- Barbour A., Norbeck J., Rubinstein J. The Effects of Varying Injection Rates in Osage County, Oklahoma, on the 2016 Mw 5.8 Pawnee Earthquake // Seismological Research Letters. 2017. V. 88. № 4. P. 1040–1053. doi: 10.1785/0220170003
- Ben-Zion Y., Rice J. Dynamic simulations of slip on a smooth fault in an elastic solid // J. Geophys. Res. 1997. V. 102. № B8. P. 17771–17784. doi: 10.1029/97JB01341
- Cappa F., Guglielmi Y., De Barros L. Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization // Nat Commun. 2022. V. 13. P. 30–39. https://doi.org/10.1038/s41467-022-30798-3
- Cappa F., Guglielmi Y., Nussbaum C., Birkholzer J. On the relationship between fault permeability increases, induced stress perturbation, and the growth of aseismic slip during fluid injection // Geophysical Research Letters. 2018. V. 45. № 11. P. 11012–11020.
- Carpenter B.M., Collettini C., Viti C., Cavallo A. The influence of normal stress and sliding velocity on the frictional behavior of calcite at room temperature: insights from laboratory experiments and microstructural observations // Geophysical Journal International. 2016. V. 205. № 1. P. 548–561. https://doi.org/10.1093/gji/ggw038
- Carpenter B.M., Saffer D.M., Marone C. Frictional properties of the active San Andreas Fault at SAFOD: Implications for fault strength and slip behavior // Journal of Geophysical Research: Solid Earth. 2015. V. 120. № 7. P. 5273–5289.
- Carpenter B.M., Scuderi M.M., Collettini C. et al. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy // Journal of Geophysical Research: Solid Earth. 2014. V. 119. № 12. P. 9062–9076.
- Gaucher E., Schoenball M., Heidbach O., Zang A., Fokker P.A., van Wees J.-D., Kohl T. Induced seismicity in geothermal reservoirs: A review of forecasting approaches // Renewable and Sustainable Energy Reviews. 2015. V. 52. P. 1473–1490. doi: 10.1016/j.rser.2015.08.026
- Grigoli F., Cesca S., Rinaldi A.P. et al. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea // Science. 2018. V. 360. № 6392. P. 1003–1006.
- Gu J-C., Rice J.R., Ruina A.L., Tse S.T. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction // Apl. Mech. Phys. Solids. 1984. V. 32. № 3. P. 167–196.
- Guglielmi Y., Cappa F., Avouac J.-P., et al. Seismicity triggered by fluid injection-induced aseismic slip // Science. 2015. V. 348. № 6240. P. 1224–1226.
- Haring M., Schanz U., Dyer B. Characterization of the Basel 1 enhanced geothermal system // Geothermics. 2008. V. 37. № 5. P. 469–495. doi: 10.1016/j.geothermics.2008.06.002
- Hincks T., Aspinall W., Cooke R. et al. Oklahoma’s induced seismicity strongly linked to wastewater injection depth // Science. 2018. V. 359. № 6381. P. 1251–1255.
- Johann L., Shapiro S.A., Dinske C. The surge of earthquakes in Central Oklahoma has features of reservoir-induced seismicity // Scientific Reports. 2018. V. 8. № 1.
- Lee H.S., Cho T.F. Hydraulic characteristics of rough fractures in linear flow under normal and shear load // Rock Mech. Rock Eng. 2002. V. 35. № 4. P. 299–318.
- Li L., Lee S.H. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media // SPE Reserv. Eval. Eng. 2008. V. 11. № 4. P. 750–758.
- Lie K.-A. An introduction to reservoir simulation using MATLAB: User Guide for the Matlab Reservoir Simulation Toolbox (MRST). SINTED ICT. 2016. 392 p.
- McClure M.W. Modeling and characterization of hydraulic stimulation and induced seismicity in geothermal and shale gas reservoirs: Doctoral dissertation. Stanford University. 2012. 369 p.
- McGarr A. Maximum magnitude earthquakes induced by fluid injection // Journal of Geophysical Research: Solid Earth. 2014. V. 119. № 2. P. 1008–1019.
- McGarr A., Bekins B., Burkardt N. et al. Coping with earthquakes induced by fluid injection // Science. 2015. V. 347. № 6224. P. 830–831.
- Mortezaei K., Vahedifard F. Multi-scale simulation of thermal pressurization of fault fluid under CO2 injection for storage and utilization purposes // International Journal of Rock Mechanics and Mining Sciences. 2017 V. 98. P. 111–120.
- Noda H., Dunham E.M., Rice J.R. Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels // Journal of Geophysical Research: Solid Earth. American Geophysical Union (AGU). 2019. V. 114. № B7. https://doi.org/10.1029/2008jb006143
- Norbeck J., Horne R. Injection-Triggered Seismicity: An Investigation of Porothermoelastic Effects Using a Rate-and-State Earthquake Model. PROCEEDINGS, Fourtieth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26-28, 2015. SGP-TR-204.
- Norbeck J., McClure M., Horne R. Revisiting Stimulation Mechanism at Fenton Hill and an Investigation of the Influence of Fault Heterogeneity on the Gutenberg-Richter b-value for Rate-and-State Earthquake Simulation. PROCEEDINGS, 41st Workshop on Geothermal Reservoir Engineering Stanford University. Stanford, California. February 22-24, 2016. SGP-TR-209.
- Norbeck J., McClure M., Lo J., Horne R. An embedded fracture modeling framework for simulation of hydraulic fracturing and shear stimulation // Computational Geosciences. 2015. V. 20(1). P. 1–18. doi: 10.1007/s10596-015-9543-2
- Norbeck J., Horne R.N. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults // Tectonophysics. 2018. V. 733. P. 108–118. DOI: https://doi.org/10.1016/j.tecto.2018.01.028
- Okazaki K., Katayama I. Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes // Geophysical Research Letters. 2015. V. 42. № 4. P. 1099–1104.
- Riga V., Turuntaev S. Induced Seismicity Modeling Based on Two-Parameter Rate-and-State Law // Izvestiya, Physics of the Solid Earth. 2021. V. 57. № 5. P. 627–643. doi: 10.1134/S1069351321050153
- Riga V., Turuntaev S. Modeling of fault deformation driven by fluid injection // Trigger effects in Geosystems, Springer Proceedings in Earth and Enviromental Sicences, Springer, Cham. 2019. P. 279–288. doi: 10.1007/978-3-030-317970-0_30
- Rubinstein J.L., Mahani A.B. Myths and Facts on Wastewater Injection, Hydraulic Fracturing, Enhanced Oil Recovery, and Induced Seismicity // Seismological Research Letters. 2015. V. 86. № 4. P. 1060–1067.
- Ruiz-Barajas S., Sharma N., Convertito V. et al. Temporal evolution of a seismic sequence induced by a gas injection in the Eastern coast of Spain // Scientific Reports. 2017. V. 7. P. 2901.
- Scuderi M.M., Collettini C. The role of fluid pressure in induced vs. triggered seismicity: insights from rock deformation experiments on carbonates // Scientific Reports. 2016. V. 6. P. 24852.
- Scuderi M.M., Collettini C. Fluid Injection and the Mechanics of Frictional Stability of Shale-Bearing Faults // Journal of Geophysical Research: Solid Earth. 2018. V. 123. № 10. P. 8364–8384.
- Shou K.J., Crouch S.L. A higher order displacement discontinuity method for analysis of crack problems // International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1995. V. 32. № 1. P. 49–55.
- Turuntaev S.B., Riga V.Y. Non-linear effects of pore pressure increase on seismic event generation in a multi-degree-of-freedom rate-and-state model of tectonic fault sliding // Nonlinear Processes in Geophysics. 2017. V. 24. № 2. P. 215–225. doi: 10.5194/npg-24-215-2017
- Weingarten M., Ge S., Godt J.W. et al. High-rate injection is associated with the increase in U.S. mid-continent seismicity // Science. 2015. V. 348. № 6241. P. 1336–1340.
- Witherspoon P.A., Wang J.S.Y., Iwai K., Gale J. E. Validity of Cubic Law for fluid flow in a deformable rock fracture // Water Resour. Res. 1980. V. 16. № 6. P. 1016–1024. doi: 10.1029/WR016i006p01016
Қосымша файлдар
