Optimal motions of an elastic rod controlled by a piezoelectric actuator
- Autores: Kostin G.V.1
-
Afiliações:
- Ishlinsky Institute for Problems in Mechanics RAS
- Edição: Nº 3 (2024)
- Páginas: 104-116
- Seção: CONTROL OF SYSTEMS WITH DISTRIBUTED PARAMETERS
- URL: https://journals.eco-vector.com/0002-3388/article/view/676418
- DOI: https://doi.org/10.31857/S0002338824030101
- EDN: https://elibrary.ru/UPROIB
- ID: 676418
Citar
Resumo
The longitudinal vibrations of an elastic rod controlled by normal forces in the cross section, which are uniformly distributed along the length over a selected interval, are studied. Such a system can be implemented using an actuator consisting of piezoelectric elements located along the axis of the rod. Criteria for the uncontrollability of individual vibration modes are given. A generalized solution to the initial-boundary value problem is found applying d’Alembert traveling waves, which are determined on the space-time mesh formed by characteristics. Linear combinations of the traveling wave and control functions define the sought displacements and dynamic potential in the energy space. The latter in a certain way relates the momentum density and the force in the cross section. The problem is to transfer the rod to a prescribed state in a fixed time while minimizing the norm of the control force. The optimal motion and the corresponding feedforward control law are found by reducing the original problem to a one-dimensional variational one. The example shows the control of vibrations for certain geometric parameters of the piezoelectric actuator.
Palavras-chave
Sobre autores
G. Kostin
Ishlinsky Institute for Problems in Mechanics RAS
Autor responsável pela correspondência
Email: kostin@ipmnet.ru
Rússia, Moscow
Bibliografia
- Lions J.L. Optimal Control of Systems Governed by Partial Differential Equations. N.Y.: Springer-Verlag, 1971. 400 p.
- Бутковский А.Г. Теория оптимального управления системами с распределенными параметрами. М.: Наука, 1965. 474 c.
- Романов И.В., Шамаев А.С. О задаче граничного управления для системы, описываемой двумерным волновым уравнением // Изв. РАН. ТиСУ. 2019. № 1. C. 109–116.
- Черноусько Ф.Л. Ананьевский И.М., Решмин С.А. Методы управления нелинейными механическими системами. М.: Физматлит, 2006. 328 с.
- Chen G. Control and Stabilization for the Wave Equation in a Bounded Domain. II // SIAM J. Control Optim. 1981. V. 19. № 1. P. 114–122.
- Гавриков А.А., Костин Г.В. Изгибные колебания упругого стержня, управляемого пьезоэлектрическими силами // ПММ. 2023. Т. 87. № 5. С. 801–819.
- IEEE Standard on Piezoelectricity // ANSI/IEEE Std 176-1987. 1988. https://doi.org/10.1109/IEEESTD.1988.79638
- Kucuk I., Sadek I., Yilmaz Y. Optimal Control of a Distributed Parameter System with Applications to Beam Vibrations Using Piezoelectric Actuators // J. Franklin Inst. 2014. V. 351. № 2. P. 656–666.
- Kostin G.V., Saurin V.V. Dynamics of Solid Structures. Methods Using Integrodifferential Relations. Berlin: De Gruyter, 2018.
- Kostin G., Gavrikov A. Controllability and Optimal Control Design for an Elastic Rod Actuated by Piezoelements // IFAC-PapersOnLine. 2022. V. 55. № 16. P. 350–355. https://doi.org/10.1016/j.ifacol.2022.09.049
- Гавриков А.А., Костин Г.В. Оптимизация продольных движений упругого стержня с помощью периодически распределенных пьезоэлектрических сил // Изв. РАН. ТиСУ. 2023. № 6. С. 93–109.
- Kostin G., Gavrikov A. Modeling and Optimal Control of Longitudinal Motions for an Elastic Rod with Distributed Forces // ArXiv. 2022. arXiv:2206.06139 5. P. 1–11. https://doi.org/10.48550/arXiv.2206.06139
- Gavrikov A., Kostin G. Optimal LQR Control for Longitudinal Vibrations of an Elastic Rod Actuated by Distributed and Boundary Forces // Mechanisms and Machine Science. V. 125. Berlin: Springer, 2023. P. 285–295. https://doi.org/10.1007/978-3-031-15758-5_28
- Ho L.F. Exact Controllability of the One-dimensional Wave Equation with Locally Distributed Control // SIAM J Control Optim. 1990. V. 28. № 3. P. 733–748.
- Bruant I., Coffignal G., Lene F., Verge M. A Methodology for Determination of Piezoelectric Actuator and Sensor Location on Beam Structures // J. Sound and Vibration. 2001. V. 243. № 5. P. 861–882. https://doi.org/10.1006/jsvi.2000.3448
- Gupta V., Sharma M., Thakur N. Optimization Criteria for Optimal Placement of Piezoelectric Sensors and Actuators on a Smart Structure: A Technical Review // J. Intelligent Material Systems and Structures. 2010. V. 21. № 12. P. 1227–1243. https://doi.org/10.1177/1045389X10381659
- Botta F., Rossi A., Belfiore N.P. A Novel Method to Fully Suppress Single and Bi-modal Excitations Due to the Support Vibration by Means of Piezoelectric Actuators // J. Sound and Vibration. 2021. V. 510. № 13. P. 116260. https://doi.org/10.1016/j.jsv.2021.116260
- Тихонов А.Н. Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 735 с.
- Михлин С.Г. Курс математической физики. М.: Наука, 1968. 576 с.
- Иосида К. Функциональный анализ. М.: Мир, 1968. 624 с.
Arquivos suplementares
