Analysis of the conditions for the occurrence of "the voice of the sea" using infrasound observations in marine waters

Cover Page

Abstract


We study the conditions for the occurrence of "the voice of the sea" in the infrasound range can occur and determine its parameters from infrasound measurements in the Black Sea water area conducted in 2011 and 2016 and in the water area of the Sea of Okhotsk in 2017. To this end, we compared the observations of different parameters (mean correlation, spectra of acoustic arrivals, direction and phase velocity) of the high-frequency infrasound (1–10 Hz), recorded in Katsiveli (Crimea) in 2011 and 2016. We performed a detailed study of the wind conditions in the Black Sea water area during the measurement period, as well as the conditions for the propagation of acoustic waves along the direction of their arrivals.

In both cases the atmospheric vortices in the direction of the arrival of infrasound were detected, which caused changes in wind velocity vector above the sea surface. The infrasound recorded in 2011 was caused by the interaction of two differently rotating atmospheric vortices over the sea. In 2016, a vortex was observed to the West from the registration point. The possibility of generating "the voice of the sea" due to the rotation of the wind velocity, which causes a nonlinear interaction of surface waves propagating in opposite directions to each other, and the formation of their 2nd harmonic in the form of a standing surface wave is discussed.

From the analysis of the wind speed and wind direction profiles along the infrasound arrival path, as well as the acoustic pressure fields calculated by the parabolic equation method for the effective sound speed profiles in the direction of infrasound propagation, the most probable areas of infrasound generation were determined. In both cases these areas coincided with the zones in which the wind speed drops to zero, and the direction of the wind changes to the opposite.

An example of simultaneous detection from one direction of the microbaroms with frequencies 0.2–0.3 Hz and "the voice of the sea" with a higher frequency of 5.5 Hz is given.


About the authors

V. G. Perepelkin

Obukhov Institute of Atmospheric Physics, RAS

Author for correspondence.
Email: vitaliper54@gmail.com

Russian Federation, Pyzhevsky per., 3, Moscow, 119017

I. P. Chunchuzov

Obukhov Institute of Atmospheric Physics, RAS

Email: vitaliper54@gmail.com

Russian Federation, Pyzhevsky per., 3, Moscow, 119017

S. N. Kulichkov

Obukhov Institute of Atmospheric Physics, RAS

Email: vitaliper54@gmail.com

Russian Federation, Pyzhevsky per., 3, Moscow, 119017

O. E. Popov

Obukhov Institute of Atmospheric Physics, RAS

Email: vitaliper54@gmail.com

Russian Federation, Pyzhevsky per., 3, Moscow, 119017

I. A. Repina

Obukhov Institute of Atmospheric Physics, RAS

Email: vitaliper54@gmail.com

Russian Federation, Pyzhevsky per., 3, Moscow, 119017

References

  1. Перепелкин В.Г., Куличков С.Н., Чунчузов И.П., Репина И.А. Об опыте регистрации "голоса-моря" в акватории Черного моря // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 6. С. 716–728.
  2. Longuet-Higgins M.S. A theory of the origin of microseisms // Philos. Trans. R. Soc. Lond. 1950. V. 243. P. 1–35.
  3. Бреховских Л.М. Об излучении океанскими волнами инфразвука в атмосферу // Изв. АН СССР. Физика атмосферы и океана. 1968. Т. 4. № 4. С. 444–450.
  4. Бреховских Л.М., Гончаров В.В., Куртепов В.М., Наугольных К.А. К вопросу об излучении инфразвука в атмосферу поверхностными волнами в океане // Изв. АН СССР. Физика атмосферы и океана. 1973. Т. 9. № 9. С. 899–907.
  5. Waxler R., Gilbert K.E. The radiation of atmospheric microbaroms by ocean waves // J. Acoust. Soc. Am. 2006. V. 119. P. 2651–2664.
  6. Kristoffer T. Walker. Evaluating the opposing wave interaction hypothesis for the generation of microbaroms in the eastern North Pacific // J. of Geoph. Res. 2012. V. 117. CXXXXX. doi: 10.1029/2012JC008409
  7. Шулейкин В.В. О голосе моря // ДАН. 1935. 3(8). № 6. С. 259.
  8. Шулейкин В.В. Физика моря. Издание 4. М.: Наука, 1968. 1083 с.
  9. Андреев Н.Н. О голосе моря // ДАН. 1939. 23. № 7. С. 625.
  10. Semenov A.G. On "Voice of Sea" Generation Mechanism // International Journal of Geoscience. 2013. V.4. P. 116–128.
  11. Assink1 J.D., Waxler R., Smets P., Evers L.G. Bidirectional infrasonic ducts associated with sudden stratospheric warming events // J. of Geoph. Res. 2014. V. 119. № 3. P. 1140–1153.
  12. Kallos G., Nickovic S., Papadopoulos A., Jovic D., Kakaliagou O., Misirlis N., Manousakis M. The regional weather forecasting system SKIRON: An overview // Proceedings of the symposium on regional weather prediction on parallel computer environments. 1998. V. 15. P. 17.
  13. Cansi Y. An automatic seismic event processing for detection and location: the PMCC method. Geophys. Res. Lett. 1995. 22. 1021–1024.
  14. Le Pichon A., Cansi Y. PMCC Progressive Multi- Channel Correlation, Technical documentation, CTBTO 2003-0269/POGGIO.
  15. Matsushima T., Murayama T., Ishihara Y., Kanao M., Yamamoto M., Toda S. Infrasound observations at Syowa Station, East Antarctica: Implications for detecting the surface environmental variations in the polar regions // Geoscience Frontiers. 2015. V. 6. i2. P. 285–296.
  16. Badulin S.I., Korotkevich A.O., Resio D., Zakharov V.E. 2008 Wave-wave interactions in wind-driven mixed seas // Proceedings of the Rogue wave. 2008 Workshop. P. 77–85. IFREMER, Brest, France. www.researchgate.net.

Statistics

Views

Abstract - 182

PDF (Russian) - 106

Cited-By


PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2019 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies