Shear Flow Instability over a Finite Time Interval

Cover Page

Cite item

Full Text

Abstract

Within the framework of a discrete quasi-geostrophic model with two vertical levels, the problem of linear stability of the flow of a stratified rotating fluid with constant vertical and horizontal velocity shifts is solved. It is shown that taking into account the horizontal shear leads to a qualitative change in the dynamics of unstable wave disturbances. The main feature is related to the effect of temporary exponential growth of unstable perturbations, i.e. growth over a finite time period. This effect manifests itself in the alternation of stages of smooth oscillating behavior (in time) with stages of exponential (explosive) growth of finite duration. A kinematic interpretation of the effect of temporal exponential growth is given, which is associated with the passage of a time-dependent perturbation wave vector through the region of exponential instability that exists in the absence of a horizontal shear. It is shown that mathematically this effect is described by solutions of a second-order differential equation containing turning points. Asymptotic solutions of the equation are given for weak horizontal shifts.

About the authors

M. V. Kalashnik

Obukhov Institute of Atmospheric Physics RAS; Institute of Physics of the Earth. O.Yu. Schmidt RAS; Research and Production Association Typhoon

Author for correspondence.
Email: kalashnik-obn@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., 3,; Russia, 123242, Moscow, Bolshaya Gruzinskaya str., 10; Russia, 249038, Kaluga obl., Obninsk, Pobedy str., 4,

References

  1. Гилл А. Динамика атмосферы и океана. М.: Мир, 1986. Т. 2. 415 с.
  2. Калашник М.В. Линейная динамика волн Иди в присутствии горизонтального сдвига // Известия РАН. Физика атмосферы и океана. 2009. Т. 45. № 6. С. 764–774.
  3. Калашник М.B., Курганский М.В., Чхетиани О.Г. Бароклинная неустойчивость в геофизической гидродинамике // Успехи физических наук. 2022. Т. 192. № 10. С. 1110–1144. https://doi.org/10.3367/UFNr.2021.08.039046
  4. Кочин Н.Е., Кибель Н.А., Розе Н.В. Теоретическая гидромеханика. Ч. 1. М.: Физматгиз, 1963. 530 с.
  5. Ламб Г. Гидродинамика. Л.: Гостехиздат, 1947. 1084 с.
  6. Лайтхилл Дж. Волны в жидкостях. М.: Мир, 1981. 600 с.
  7. Ле Блон П., Майсек Л. Волны в океане. М.: Мир, 1981. Т. 1. 480 с., Т. 2. 365 с.
  8. Монин А.С. Теоретические основы геофизической гидродинамики. Л.: Гидрометеоиздат, 1988. 433 с.
  9. Найфэ А. Методы возмущений. М.: Мир, 1976. 456 с.
  10. Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977. 622 с.
  11. Фабер Т.Е. Гидроаэродинамика. М.: Постмаркет, 2001. 560 с.
  12. Barcilon A., Bishop C.H. Nonmodal development of baroclinic waves undergoing horizontal shear deformation // J. Atmos. Sci. 1998. V. 55. № 4. P. 3583–3597.
  13. Bishop C.H. On the behavior of baroclinic waves undergoing horizontal shear deformation I: The “RT” phase diagram // Quart. J. Roy. Met. Soc. 1993. V. 119. P. 221–240.
  14. Chagelishvili G.D., Khujadze G.R., Lominadze J.G., Rogava A.D. Acoustic Waves in Unbounded Shear Flows // Physics of Fluids. 1997. V. 9. P. 1955–1965.
  15. Chagelishvili G.D., Tevzadze A.G., Bodo G., Moiseev S.S. Linear mechanism of wave emergence from vortices in smooth shear flows // Phys. Rev. Letters. 1997. V. 79. № 17. P 3178–3181.
  16. Eady E.T. Long waves and cyclone waves // Tellus. 1949. № 1(3). P. 33–52.
  17. Held I.M., Pierrehumbert R.T., Garner S.T., Swanson K.L. Surface quasi-geostrophic dynamics // J. Fluid Mech. 1995. V. 282. P. 1–20.
  18. Kalashnik M.V., Chkhetiani O.G., Kurgansky M.V. Discrete SQG models with two boundaries and baroclinic instability of jet flows // Phys. Fluids. 2021. V. 33. P. 076608. https://doi.org/ Submitted: 14 May 2021. Accepted: 04 July 2021. Published Online: 20 July 2021.https://doi.org/10.1063/5.0056785
  19. Kalashnik M.V., Mamatsashvili G.R., Chagelishvili G.D., Lominadze J.G. Linear dynamics of non-symmetric perturbations in geostrophic flows with a constant horizontal shear // Quart. J. Roy. Met. Soc. 2006. V. 132. № 615. P. 505–518.
  20. Pedlosky J., Geophysical Fluid Dynamics (Springer-Verlag, Berlin/New York, 1987). P. 710.
  21. Phillips N.A. Energy transformation and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model // Tellus. 1954. V. 6. P. 273–283.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (129KB)
3.

Download (21KB)
4.

Download (104KB)
5.

Download (62KB)

Copyright (c) 2023 М.В. Калашник

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.