Clouds and Turbulence Theory: Peculiar Self-Similarity, 4/3 Fractal Exponent and Invariants

Capa

Citar

Texto integral

Resumo

In 1982 Lovejoy has published an illustration to Mandelbrot proposal how to characterize the area-perimeter ratio of complicated planar forms and it was found that exponent \(\beta \) for the satellite- and radar-determined cloud and rain areas of such a fractal is 1.35 close to 4/3. Later on it was notified that the same exponent was found also for noctilucent clouds. Such a value might be related to classic turbulence theory of 1941. This text demonstrates this relation using two basic papers by Kolmogorov and Obukhov. The role of prefractal multipliers is revealed, they form a couple of the peculiar invariants for cloud fields and a non-dimensional self-similarity numbers for these fields of sizes \(1 - {{10}^{6}}\,\,{\text{k}}{{{\text{m}}}^{2}}.\) The peculiarity is in their dimensional dependence and in the presence of few invariants, not usual invariants in cloud forms. Further research on random walk of a fluid particle in the 6D phase-space may lead to new discoveries.

Sobre autores

G. Golitsyn

Obukhov Institute of Atmospheric Physics Russian Academy of Science

Autor responsável pela correspondência
Email: gsg@ifaran.ru
Russia, 119017, Moscow, Pyzhovskiy per., 3

O. Chkhetiani

Obukhov Institute of Atmospheric Physics Russian Academy of Science

Autor responsável pela correspondência
Email: ochkheti@gmail.com
Russia, 119017, Moscow, Pyzhovskiy per., 3

N. Vazaeva

Obukhov Institute of Atmospheric Physics Russian Academy of Science; Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: vazaevanv@ifaran.ru
Russia, 119017, Moscow, Pyzhovskiy per., 3; Russia, 105005, Moscow, 2-ya Baumanskaya str., 5, bld. 1

Bibliografia

  1. Голицын Г.С. Вероятностная структура макромира: землетресения, ураганы, наводнения… М. – Физматлит, Москва, 2021. 176 с.
  2. Guillaume A., Kahn B.H., Yue Q., Fetzer E.J., Wong S., Manipon G.J., Hua H., Wilson B.D. Horizontal and vertical scaling of cloud geometry inferred from CloudSat data. // J. Atmos. Sci. 2018. V. 75(7). P. 2187–2197. https://doi.org/10.1175/JAS-D-17-0111.1
  3. Kolmogorov A.N. Zufallige Bewegungen. // Ann. Math. 1934. V. 35. P. 116–117. https://doi.org/10.2307/1968123
  4. Lovejoy S. Area-perimeter relation for rain and cloud areas // Science. 1982. V. 216(4542). P. 185–187. https://doi.org/10.1126/science.216.4542.185
  5. Mandelbrot B. Fractals, Form, Chance and Dimension. W.H. Freeman and Co., San Francisco, 1977. 352 p.
  6. Monin A.S., Yaglom A.M. Statistical Hydromechanics. V. 2. MIT Press, Cambridge, MA, 1975. 882 p.
  7. Obukhov A.M. Description of turbulence in terms of Lagrangian variables. // Adv. Geophys. 1959. V. 6. P. 113–115. https://doi.org/10.1016/s0065-2687(08)60098-9
  8. Oort A.H. On estimates of the atmospheric energy cycle. // Mon. Weather Rev. 1964. V. 92(11). P. 483–493. https://doi.org/10.1175/1520-0493(1964)092<0483: OEOTAE>2.3.CO;2
  9. von Savigny C., Brinkhoff L.A., Bailey S.M., Randall C.E., Russell III J.M. First determination of the fractal perimeter dimension of noctilucent clouds. // Geophysical Research Letters. 2011. V. 38(2). https://doi.org/10.1029/2010GL045834
  10. Wood R., Field P.R. The distribution of cloud horizontal sizes // J. Climate. 2011. V. 24(18). P. 4800–4816. https://doi.org/10.1175/2011JCLI4056.1

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Г.С. Голицын, О.Г. Чхетиани, Н.В. Вазаева, 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.