Numerical study of the riverine water residence time on the shelf of the eastern arctic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The circulation features of the Siberian shelf in the period from 1985 to 2014 are studied using numerical large-scale model of ocean and sea ice circulation and atmospheric reanalysis data. It is shown that in the last two decades the residence time of river tracers in the shelf area has 2-4 times decreased. The most likely reason for this reduction is an increase in the duration of the ice-free period, combined with the prevailing wind effect, favorable for transport of tracers into the deep part of the Arctic Ocean.

About the authors

G. A. Platov

Institute of Computational Mathematics and Mathematical Geophysics SB RAS

Email: plat@ommfao.sscc.ru
pr. Lavrentiev, 6, Novosibirsk, 630090 Russia

E. N. Golubeva

Institute of Computational Mathematics and Mathematical Geophysics SB RAS

Author for correspondence.
Email: plat@ommfao.sscc.ru
pr. Lavrentiev, 6, Novosibirsk, 630090 Russia

References

  1. Голубева Е.Н., Платов Г.А. Численное моделирование отклика Арктической системы океан-лед на вариации атмосферной циркуляции 1948–2007 гг. // Изв. РАН. Физика атмосферы и океана. 2009. Т. 45. № 1. С. 145–160. https://doi.org/10.1134/S0001433809010095
  2. Марчук Г.И., Залесный В.Б., Кузин В.И. О методах конечных разностей и конечных элементов в задаче глобальной ветровой циркуляции океана // Изв. АН СССР. Физика атмосферы и океана. 1975. Т. 11. № 12. С. 1294–1300.
  3. Платов Г.А. Численное моделирование формирования глубинных вод Северного Ледовитого океана. Часть I: идеализированные тесты // Изв. РАН. Физика атмосферы и океана. 2011. Т. 47. № 3. С. 393–408. http://dx.doi.org/10.1134/S0001433811020071
  4. Aksenov Y., Karcher M., Proshutinsky A., Gerdes R., de Cuevas B., Golubeva E., Kauker F., Nguyen A.T., Platov G.A., Wadley M., Watanabe E., Coward A.C., Nur- ser A.J.G. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments // J. Geophys. Res. Oceans. 2016. V. 121. P. 27–59. https://doi.org/10.1002/2015JC011299
  5. Barton B.I., Lenn Y., Lique C. Observed Atlantification of the Barents Sea causes the polar front to limit the expansion of winter sea ice // J. Phys. Oceanography. 2018. V. 48. P. 1849–1866. https://doi.org/10.1175/JPO-D-18-0003.1
  6. Bitz C.M., Lipscomb W.H. An energy-conserving thermodynamic model of sea ice // J. Geophys. Res. 1999. V. 104. P. 15669–15677. https://doi.org/10.1029/1999JC900100
  7. de Boer G.J., Pietrzak J.D., Winterwerp J.C. On the vertical structure of the Rhine region of freshwater influence // Ocean Dynamics. 2006. V. 56. P. 198–216. https://doi.org/10.1007/s10236-005-0042-1
  8. Dukhovskoy D.S., Yashayaev I., Chassignet E.P., Myers P.G., Platov G., Proshutinsky A. Time Scales of the Greenland Freshwater Anomaly in the Subpolar North Atlantic // J. Climate. 2021. V. 34. P. 8971–8987. https://doi.org/10.1175/JCLI-D-20-0610.1
  9. FAMOS: Forum for Arctic Modeling and Observational Synthesis. Available online: https://web.whoi.edu/famos (Дата посещения 24/07/2024 г.)
  10. Golubeva E.N., Platov G.A. On improving the simulation of Atlantic Water circulation in the Arctic Ocean // J. Geophys. Res. 2007. V. 112. C04S05. https://doi.org/10.1029/2006JC003734
  11. Golubeva E., Platov G., Malakhova V., Kraineva M., Iakshina D. Modelling the Long-Term and Inter-Annual Variability in the Laptev Sea Hydrography and Subsea Permafrost State. Polarforschung. 2018. V. 87. № 2. P. 195–210. https://doi.org/10.2312/polarforschung.87.2.195
  12. Hunke E.C., Dukowicz J.K. An elastic-viscous-plastic model for ice dynamics // J. Phys. Oceanography. 1997. V. 27. P. 1849–1867. https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
  13. Jakobsson M., Macnab R., Mayer L., Anderson R., Edwards M., Hatzky J., Schenke H.W., Johnson P. An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses // Geophys.Res. Lett. 2008. V. 35. L07602. https://doi.org/10.1029/2008GL033520
  14. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project // Bull. Am. Meteorol. Soc. 1996. V. 77. P. 437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  15. Lipscomb W.H., Hunke E.C. Modeling Sea Ice Transport Using Incremental Remapping // Mon. Weather Rev. 2004. V. 132. P. 1341–1354. https://doi.org/10.1175/1520-0493(2004)1322.0.CO;2
  16. Marchuk G.I., Kuzin V.I. On the combination of finite element and splitting-up methods in the solution of parabolic equations // Journal of Computational Physics. 1983. V. 52. №. 2. P. 237–272. https://doi.org/10.1016/0021-9991(83)90030-X.
  17. Osadchiev A.A., Pisareva M.N., Spivak E.A., Shchuka S.A., Semiletov I. P. Freshwater transport between the Kara, Laptev, and East-Siberian seas // Scientific Reports. 2020. V. 10. Article number: 13041. https://doi.org/10.1038/s41598-020-70096-w
  18. Osadchiev A., Sedakov R., Frey D., Gordey A., Rogozhin V., Zabudkina Z., Spivak E., Kuskova E., Sazhin A., Semiletov I. Intense zonal freshwater transport in the Eurasian Arctic during ice-covered season revealed by in situ measurements // Scientific Reports. 2023. V. 13. Article number: 16508. https://doi.org/10.1038/s41598-023-43524-w
  19. Platov G., Krupchatnikov V., Martynova Y., Borovko I., Golubeva E. A new earth's climate system model of intermediate complexity, PlaSim-ICMMG-1.0: Description and performance // IOP Conf. Ser.: Earth Environ. Sci. 2017. V. 96. P. 012005. http://dx.doi.org/10.1088/1755-1315/96/1/012005
  20. Platov G., Iakshina D., Krupchatnikov V. Characteristics of Atmospheric Circulation Associated with Variability of Sea Ice in the Arctic // Geosciences. 2020. V. 10. №. 9. P. 359. https://doi.org/10.3390/geosciences10090359
  21. Proshutinsky A., Johnson M.A. Two circulation regimes of the wind driven Arctic Ocean // J. Geophys. Res. 1997. V. 102. P. 12493–12514. https://doi.org/10.1029/97JC00738
  22. Proshutinsky A., Aksenov Y., Kinney C.J., Gerdes R., Golubeva E., Holland D., Holloway G., Jahn A., Johnson M., Popova E., Steele M., Watanabe E. Recent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project // Oceanography. 2011. V. 24. P. 102–113. https://doi.org/10.5670/oceanog.2011.61
  23. Proshutinsky A., Krishfield R., Toole J.M., Timmer- mans M.-L., Williams W., Zimmermann S., Yamamoto-Kawai M., Armitage T.W.K., Dukhovskoy D., Golubeva, E., Manucharyan G.E., Platov G., Watanabe E., Kikuchi T., Nishino S., Itoh M., Kang S.-H., Cho K.-H., Tateyama K., Zhao J. Analysis of the Beaufort Gyre freshwater content in 2003–2018 // J. Geophys.Res. Oceans. 2019. V. 124. P. 9658–9689. https://doi.org/10.1029/2019JC015281
  24. R-ArcticNET: https://www.r-arcticnet.sr.unh.edu/v4.0/index.html (дата посещения 24/07/2024 г.)
  25. SibCIOM: https://icmmg.nsc.ru/en/content/pages/sibciom- siberian-coupled-ice-ocean-model (дата посещения 24/07/2024 г.)
  26. Völösmarty C.J., Fekete B.M., Tucker B.A. Global river discharge, 1807–1991, Version 1.1 (RivDis) // ORNL Distributed Active Archive Center Datasets. 1998. Oak Ridge Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/199
  27. Watanabe E., Wang J., Sumi A., Hasumi H. Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century // Geophys. Res. Lett. 2006. V. 33. L23703. https://doi.org/10.1029/2006GL028112
  28. Whitefield J., Winsor P., McClelland J., Menemenlis D. A new river discharge and river temperature climatology dataset for the pan-Arctic region // Ocean Model. 2015. V. 88. P. 1–15. https://doi.org/10.1016/j.ocemod.2014.12.012
  29. Woodgate R.A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data // Prog. Oceanogr. 2018. V. 160. P. 124–154. https://doi.org/10.1016/j.pocean.2017.12.007

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.