Explosive Growth of Asymmetric Disturbances in a Flow with Vertical Shear

Capa

Citar

Texto integral

Resumo

The classical problem of geophysical hydrodynamics is the problem of the instability of a zonal geostrophic flow with a vertical velocity shear. At present, the instability with respect to symmetric perturbations that do not depend on the coordinate along the flow has been most thoroughly studied. For a symmetric instability to arise, the two-dimensional perturbation wave vector must lie inside a certain sector in the vertical plane of the wave numbers. In this paper, we study the instability with respect to asymmetric perturbations oriented at an angle to the flow. Fundamentally new features of the temporal dynamics of the amplitudes of such perturbations are found. The main feature is associated with the existence of a stage of exponential explosive growth of finite duration. A kinematic interpretation of this stage is given, which is related to the passage of the vertical projection of the perturbation wave vector through the sector of symmetric instability.

Sobre autores

М. Kalashnik

Obukhov Institute of Atmospheric Physics, RAS; Schmidt Institute of Physics of the Earth, RAS; Research and Production Association Typhoon

Autor responsável pela correspondência
Email: kalashnik-obn@mail.ru
Russia, 109017, Moscow, Pyzhevsky per., 3; Russia, 123242, Moscow, Bolshaya Gruzinskaya, 10; Russia, 249038, Kaluga obl.,, Obninsk, ul. Pobedy, 4

Bibliografia

  1. Джозеф Д. Устойчивость движений жидкости. М.: Мир, 1981. 638 с.
  2. Найфэ А. Методы возмущений. М.: Мир. 1976. 456 с.
  3. Калашник М.В., Свиркунов П.Н. О состояниях циклострофического и геострофического баланса // Докл. РАН. 1995. Т. 344. № 2. С. 233–236.
  4. Калашник М.В., Свиркунов П.Н. О симметричной устойчивости состояний циклострофического и геострофического баланса в стратифицированной среде // Докл. РАН. 1996. Т. 348. № 6. С. 811–813.
  5. Калашник М.B., Курганский М.В., Чхетиани О.Г. Бароклинная неустойчивость в геофизической гидродинамике // Успехи физических наук. 2022. Т. 192. № 10. С. 1110–1144.
  6. Калашник М. В. Неустойчивость сдвигового течения на конечном временном промежутке // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 2. С. 144–149.
  7. Курганский М.В. Симметричная неустойчивость вертикальных бароклинных вихрей с теплым ядром // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 3. С. 251–264.
  8. Шакина Н.П. Гидродинамическая неустойчивость в атмосфере. Л.: Гидрометеоиздат, 1990. 309с.
  9. Bennets P.A., Hoskins B.J. Conditional symmetric instability – a possible explanation for frontal rainbands // Quart. J. Roy. Met. Soc. 1979. V. 105. P. 945–962.
  10. Chagelishvili G.D., Rogava A.D., Segal I., Hydrodynamic Stability of Compressible Plane Couette Flow // Physical Review E. 1994. V. 50. P. 4283–4289.
  11. Chagelishvili G.D., Tevzadze A.G., Bodo G., Moiseev S.S. Linear mechanism of wave emergence from vortices in smooth shear flows // Phys. Rev. Letters. 1997. V. 79. № 17. P. 3178–3181.
  12. Kalashnik M.V., Mamatsashvili G.R., Chagelishvili G.D., Lominadze J.G. Linear dynamics of non-symmetric perturbations in geostrophic flows with a constant horizontal shear // Quart. J. Roy. Met. Soc. 2006. V. 132. № 615. P. 505–518.
  13. Pedlosky J. Geophysical Fluid Dynamics. Berlin-New York.: Springer-Verlag, 1987. 710 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (195KB)
3.

Baixar (170KB)
4.

Baixar (95KB)

Declaração de direitos autorais © М.В. Калашник, 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.