Assessment of the amplitude of seiches generated by remote earthquakes in small inland water bodies

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The process of formation of seiche level oscillations initiated by remote earthquakes in small inland bodies of water is analyzed, and a method for estimating the amplitude of such oscillations is proposed. It is shown that to estimate the amplitude, a reservoir can be described by two parameters: horizontal extent and maximum period of natural oscillations. The method is based on an exact analytical solution of a one-dimensional problem within the framework of the linear theory of long waves. The method assumes knowledge of the horizontal components of seismic ground motions. For numerical calculations, the work used a record of the catastrophic earthquake in Turkey on February 6, 2023, obtained by a seismometer of the Department of Physics of the Earth, Faculty of Physics, Lomonosov Moscow State University (Moscow) at a distance of 2050 km from the epicenter. The efficiency of the method is confirmed by comparing analytical estimates with the results of two-dimensional numerical modeling conducted for a set of model basins of cylindrical shape and constant depth, as well as for reservoirs with bathymetry corresponding to real lakes. It has been shown that the earthquake in question in the water bodies of the Moscow region could have caused fluctuations in the water level with a range of up to 0.5 m.

全文:

受限制的访问

作者简介

D. Valeeva

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: dilaravn@mail.ru

Physical Faculty

俄罗斯联邦, Leninskie gory, 1, bld. 2, Moscow, 119991

М. Nosov

Lomonosov Moscow State University

Email: m.a.nosov@mail.ru

Physical Faculty

俄罗斯联邦, Leninskie gory, 1, bld. 2, Moscow, 119991

参考

  1. Аракава А., Мезингер Ф. Численные методы, используемые в атмосферных моделях. Л.: Гидрометео-издат, 1979. С. 93.
  2. Доброхотов С.Ю., Калиниченко В.А., Миненков Д.С., Назайкинский В. Е. Асимптотики длинных стоячих волн в одномерных бассейнах с пологими берегами: теория и эксперимент // Прикладная математика и механика. 2023. T. 87. № 2. С. 157–175.
  3. Елизарова Т.Г., Сабурин Д.С. Численное моделирование колебаний жидкости в топливных баках // Матем. моделирование. 2013. Т. 25. № 3. С. 75.
  4. Зильберштейн О.И, Сафронов Г.Ф., Семенов А.Ю. Природные катастрофы и стихийные бедствия в Дальневосточном регионе Владивосток: ДВО АН СССР. 1990. Т. 2. С. 277.
  5. Кочин Н.Е., Кибель И.А. и др. Теоретическая гидродинамика ч. 1. М.: Физматгиз, 1963. С. 518.
  6. Левин Б.В., Носов М.А. Физика цунами и родственных явлений в океане. М.: Янус-К, 2005. С. 322.
  7. Лэмб Г. Гидродинамика. Л.: Государственное издательство технико-теоретической литературы, 1947. С. 358.
  8. Моисеев Н.Н., Петров А.А. Численные методы расчета собственных частот колебаний ограниченного объема жидкости. М.: ВЦ АН СССР, 1966. 268 с.
  9. Носов М.А., Колесов С.В., Нурисламова Г.Н., Большакова А.В. Влияние вращения Земли на волны цунами, вызванные глубокофокусным Охотоморским землетрясением 2013 г. // ВМУ. Сер. 3. Физика. Астрономия. 2018. № 6. С. 117–123.
  10. Полянин А.Д. Справочник по линейным уравнениям математической физики. М.: Издательская фирма «Физико-математическая литература», 2001. С. 260.
  11. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984. С. 432.
  12. Смирнов С.В., Кучер К.М., Гранин Н.Г., Стурова И.В. Сейшевые колебания Байкала // Изв. РАН. Физика атмосферы и океана. 2014. Т. 50. № 1. С. 105–116.
  13. Сретенский Л.Н. Теория волновых движений жидкости. М.: Наука, 1977. 816 с.
  14. Bondevik S., Gjevik B., Sørensen M.B. Norwegian seiches from the giant 2011 Tohoku earthquake // Geophys. Res. Lett. 2013. V. 40. № 13. P. 3374–3378.
  15. Forel F.-A. Le Léman (monographie limnologique), tome second. Lausanne: Librairie de l’Université de Lausanne, 1895. P. 59.
  16. Ichinose G.A., Anderson J.G. The potential hazard from tsunami and seiche waves generated by large earthquakes within Lake Tahoe, California-Nevada // Geophys. Res. Lett., 2000. V. 27. № 8. P. 1203.
  17. Iwaki M., Toda T. Seismic seiche-related oscillations in Lake Biwa, Japan, after the 2011 Tohoku earthquake // Scientific Reports. 2022. V. 12. № 1. P. 19357.
  18. Kant I. Geschichte und Naturbeschriebung der merkwrdigsten Vorfalle des Erdbebens? Welches an dem Ende des MDCCLV Jahres einen grossen Theil der Erde erschtert hat. 1756 // Samtlliche Werke. 1839. V. 6. P. 227–280.
  19. Kvale A. Seismic seiches in Norway and England during the Assam earthquake of August 15 // Bull. Seismol. Soc. Am. 1955. V. 45. № 2. P. 93–113.
  20. Levin B.W. Nonlinear oscillating structures in the earthquake and seaquake dynamics // Chaos: An Interdisciplinary Journal of Nonlinear Science. 1996. V. 6. № 3. P. 405–413.
  21. Levin B.W., Nosov M.A. Physics of Tsunamis, Second Edition. Cham–Heidelberg-New York–Dordrecht–London: Springer, 2016.
  22. McGarr A. Seismic Seiches // Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, 2011.
  23. McGarr A., Vorhis R.C. Seismic seiches from the March 1964 Alaska Earthquake // U. S. Geol. Surv. Prof. Pap. 1965. 544E. E1–E43.
  24. Merian J.R. Ueber die Bewegung tropfbarer Flüssigkeiten in Gef ssen. Basel: Schweighauser, 1828.
  25. Rabinovich A.B. Seiches and harbor oscillations // Handbook of Coastal and Ocean Engineering. Los Angeles: California State Univ., 2009. P. 193–236.
  26. Soomro R.A., Weidle C., Cristiano L., Lebedev S., Meier T., & PASSEQ Working Group. Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements // Geophysical Journal International. 2016. V. 204. № 1. P. 517–534.
  27. https://www.youtube.com/watch?v=S5dKWNA6CLU&ab_channel=%D0%A1%D0%BA%D0%B0%D0%B9%D0%A2%D0%BE%D0%BF
  28. https://lakemaps.org/

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Original and filtered accelerograms of the February 6, 2023 earthquake in Turkey

下载 (69KB)
3. Fig. 2. Spectral estimates of accelerograms of the February 6, 2023 earthquake in Turkey normalized to the maximum value. The original signal is the black curve, the filtered one is the red one. The filter cutoff frequency of "0.25 Hz" is marked in the figure

下载 (61KB)
4. Fig. 3. Distribution of maximum amplitudes (peak-to-peak) of seiche oscillations in cylindrical basins of constant depth. The parameters of the basins, as well as the values of the maxima along the basin mirror and at the water's edge are shown in the figure

下载 (88KB)
5. Fig. 4. Distribution of maximum amplitudes (peak-to-peak) of seiche oscillations in reservoirs (lakes) with natural bathymetry. The names of the lakes and the values of the maxima are shown in the figure. The isobaths are shown in black isolines, the numbers are the depth in meters

下载 (87KB)
6. Fig. 5. Maximum amplitude (span) of seiche oscillations normalized to the horizontal extent of the reservoir L, as a function of the maximum natural period of standing waves T0. Colored curves – calculation using the analytical one-dimensional model (channel). The color of the curves varies depending on the azimuthal angle of the channel orientation in accordance with the legend shown in the figure (numbers – angle in degrees). The results of two-dimensional numerical calculations are shown as black circles for cylindrical basins and triangles for lakes with natural bathymetry. Basin parameters and lake names are indicated above the points. Circles with black fill correspond to cases when the maximum at the water's edge coincides with the maximum on the mirror. Circles without fill show the value of the maximum reached at the water's edge.

下载 (51KB)

版权所有 © Russian Academy of Sciences, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。