Моделирование тепловой структуры протопланетного диска с помощью мультидиапазонного диффузионного приближения с ограничителем потока

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В данной работе продолжен анализ модели расчета тепловой структуры аксиально-симметричного протопланетного диска, начатый в статье Павлюченкова (2024). В основе модели лежит известное диффузионное приближение с ограничителем потока (Flux Limited Diffusion, FLD) с отдельным расчетом нагрева прямым излучением звезды (далее — метод FLDs). В дополнение к описанной ранее модели FLDs с усредненными по длине волны непрозрачностями представлена реализованная нами мультидиапазонная модель mFLDs, где спектр теплового излучения разделен на несколько частотных диапазонов. Модель основана на неявной конечно-разностной схеме для уравнений диффузии теплового излучения, которая сводится к системе линейных алгебраических уравнений, записанных в гиперматричной форме. Предложен модифицированный метод Гаусса для обращения разреженной гиперматрицы исходной системы линейных уравнений. Описанные в статье результаты моделирования показывают, что радиальный профиль температуры из mFLDs в экваториальной плоскости диска обладает переменным наклоном в соответствии с расчетом методом Монте-Карло. Модель mFLDs также качественно воспроизводит неизотермичность распределения температуры по угловой координате вблизи экваториальной плоскости, что не обеспечивается методом FLDs. Однако между эталонными значениями температуры и результатами mFLDs остаются количественные различия. Эти отличия, вероятно, вызваны проявлением диффузионной природы приближения FLD. Показано также, что характерные времена прихода диска к тепловому равновесию в рамках модели mFLDs могут быть существенно короче, чем в FLDs. Это свойство необходимо учитывать при моделировании нестационарных процессов в протопланетных дисках в рамках моделей на основе FLD.

Об авторах

Я. Н. Павлюченков

Федеральное государственное бюджетное учреждение Российской академии наук Институт астрономии

Email: pavyar@inasan.ru
Москва, Россия

В. В. Акимкин

Федеральное государственное бюджетное учреждение Российской академии наук Институт астрономии

Москва, Россия

Список литературы

  1. Y.N. Pavlyuchenkov, Astron. Rep. 68(11), 1045 (2024).
  2. P.J. Armitage, arXiv:1509.06382 [astro-ph.SR] (2015).
  3. G. Lesur, M. Flock, B. Ercolano, M. Lin, et al., in Protostars and Planets VII, Proc. of a Conference held 10–15 April 2023 at Kyoto, Japan; edited by S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, and M. Tamura (2023) (San Francisco, 2023), ASP Conf. Ser. 534, p. 465.
  4. R. Teyssier and B. Commerçon, Frontiers in Astron. and Space Sci. 6, id. 51 (2019), arXiv:1907.08542 [astro-ph.IM].
  5. R. Wünsch, Frontiers in Astron. and Space Sci. 11, id. 1346812 (2024), arXiv:2403.05410 [astro-ph.IM].
  6. C.D. Levermore and G.C. Pomraning, 248, 321 (1981).
  7. Y.N. Pavlyuchenkov, D.S. Wiebe, V.V. Akimkin, M.S. Khramtsova, and T. Henning, Monthly Not. Roy. Astron. Soc. 421(3), 2430 (2012), arXiv:1201.0642 [astro-ph.GA].
  8. C.P. Dullemond, G. J. van Zadelhoff, A. Natta, Astron. Astrophys. 389, 464 (2002); arXiv: astro-ph/0204281.
  9. B. van der Holst, G. Tóth, I.V. Sokolov, K.G. Powell, et al., Supp. 194(2), id. 23 (2011), arXiv:1101.3758 [astro-ph.SR].
  10. N. Vaytet, E. Audit, G. Chabrier, B. Commercon, and J. Masson, Astron. and Astrophys. 543, id. A60 (2012), arXiv:1205.5143 [astro-ph.SR].
  11. D. Mihalas, Stellar atmospheres (San Francisco: W.H. Freeman, 1978).
  12. C.P. Dullemond, A. Juhasz, A. Pohl, F. Sereshti, R. Shetty, T. Peters, B. Commercon, and M. Flock, RADMC-3D: A multi-purpose radiative transfer tool, Astrophysics Source Code Library, record ascl:1202.015 (2012).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025