The refinement of the parameters of β-turns using neutron diffraction data

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Beta-bends are a difficult to interpret type of polypeptide chain backbone structure of globular proteins. Beta-bends are usually classified according to the dihedral angles φ and ψ of amino acid residues i + 1 and i + 2. Ramachandran map analysis of amino acid residues i + 1 and i + 2 indicates the resulting conformational stresses in bending. The mechanism of stabilization of their energetically disadvantageous conformations is still unclear. This kind of conformation stresses can only be compensated by additional interactions, such as additional hydrogen bonds, whose geometry and energy compensates for the beta-bending stress. Neutronography is the only available direct method for determining the position of hydrogen atoms in the structures of chemical compounds, including proteins. In this work, beta-bends from 176 protein structures from PDB established by neutronography are studied. In these structures, 3733 beta-bends were found using the i → i + 3 hydrogen bonding criterion. Using clustering by the magnitude of conformational angles, eight types of bends were newly identified. The magnitudes of conformational angles for each type of bend were determined. The hypothesis of additional hydrogen bonding to stabilize the bend was not confirmed, suggesting that the bending stress is compensated by other factors.

作者简介

A. Korobkov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. Khurmuzakiy

I.M. Sechenov First Medical University (Sechenov University)

Moscow, Russia

N. Esipova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

V. Tymanyan

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. Anashkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: anastasia.a.anashkina@mail.ru
Moscow, Russia

参考

  1. C. M. Venkatachalam, Biopolymers, 6, 1425 (1968). doi: 10.1002/bip.1968.360061006
  2. P. N. Lewis, F. A. Momany, and H. A. Scheraga, Biochim. Biophys. Acta - Protein Struct., 303, 211 (1973). doi: 10.1016/0005-2795(73)90350-4
  3. J. S. Richardson, In Advances in Protein Chemistry, Ed. by C. B. Anfinsen, J. T. Edsall, and F. M. Richards, (Acad. Press, 1981), V. 34, pp. 167-339.
  4. P. Y. Chou and G. D. Fasman, J. Mol. Biol., 115, 135 (1977). doi: 10.1016/0022-2836(77)90094-8
  5. C. M. Wilmot and J. M. Thornton, J. Mol. Biol., 203, 221 (1988). doi: 10.1016/0022-2836(88)90103-9
  6. C. M. Wilmot and J. M. Thornton, Prot. Engineer., Design and Selection, 3 (6), 479 (1990). doi: 10.1093/protein/3.6.479
  7. E. G. Hutchinson and J. M. Thornton, Prot. Sci., 3, 2207 (1994).
  8. M. Shapovalov, S. Vucetic, and R. L. Dunbrack, PLoS Comput. Biol., 15 (3), e1006844 (2019). doi: 10.1371/journal.pcbi.1006844
  9. O. Koch and G. Klebe, Proteins, 74, 353 (2009). doi: 10.1002/prot.22185
  10. A. G. de Brevern, Sci. Rep., 6, 33191 (2016). doi: 10.1038/srep33191
  11. C. Micheletti, F. Seno, and A. Maritan, Proteins, 40, 662 (2000). doi: 10.1002/1097-0134(20000901)40: 4<662::aid-prot90>3.0.co;2-f
  12. Y. Liu, Z. Li, H. Xiong, et al., In Proc. IEEE Int. Conf. on Data Mining (2010), ISBN 978-1-4244-9131-5.
  13. D. Moulavi, P. A. Jaskowiak, R. Campello, et al., In Proc. SIAM Int. Conf. on Data Mining (2014). doi: 10.1137/1.9781611973440.96
  14. E. Oksanen, J. C.-H. Chen, and S. Z. Fisher, Molecules, 22, 596 (2017). doi: 10.3390/molecules22040596

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023