Synaptic aspects of the pathogenesis of autism, amyotrophic lateral sclerosis, and Alzheimer’s disease

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Recently, there has been evidence that alterations in functionality of synapses both at the pre- and postsynaptic level play an important role in the pathogenesis of many neurodegenerative diseases and autism spectrum disorders. Of particular interest may be the data on synaptic defects appearing in the early, asymptomatic stages of the disease, when it might still be possible to prevent mass degeneration of neurons. Probably, modulation of synaptic signal transduction at this stage is very effective through therapy of a number of similar diseases. This review aims to explore the role of synaptic structures in the pathogenesis of Alzheimer's disease, amyotrophic lateral sclerosis and autism spectrum disorders.

作者简介

A. Khairullin

Kazan State Medical University;Kazan Federal University

Email: khajrulli@yandex.ru
Kazan, Russia

M. Mukhamedyarov

Kazan State Medical University

Kazan, Russia

S. Grishin

Kazan State Medical University

Kazan, Russia

A. Teplov

Kazan State Medical University

Kazan, Russia

K. Nagiev

Kazan State Medical University

Kazan, Russia

A. Ziganshin

Kazan State Medical University

Kazan, Russia

参考

  1. M. C. Dalakas, H. Alexopoulos, and P. J. Spaeth, Nat. Rev. Neurol., 16, 601 (2020).
  2. D. J. Selkoe, Science, 298, 789 (2002).
  3. H. W. Querfurth and F. M. LaFerla, N. Engl. J. Med., 362, 329 (2010).
  4. E. Masliah, M. Mallory, M. Alford, et al., Neurology, 56, 127 (2001).
  5. M. Dadon-Nachum, E. Melamed, and D. Offen, J. Mol. Neurosci., 43, 470 (2011).
  6. J. Durand, J. Amendola, C. Bories, et al., J. Physiol., 99, 211 (2006).
  7. J. Y. Li, M. Plomann, and P. Brundin, Trends Mol. Med., 9, 414 (2003).
  8. C. C. Garner and D. Z. Wetmore, Adv. Exp. Med. Biol., 970, 451 (2012).
  9. Е. А. Трифонова, Т. М. Хлебодарова и Н. Е. Грунтенко, Вавиловский журнал генетики и селекции, 20, 959 (2016).
  10. T. Takumia, K. Tamadaa, F. Hatanakaa, et al., Neurosci. Biobehav. Rev., 110, 60 (2020).
  11. L. Kanner, Nerv. Child, 2, 217 (1943).
  12. C. Lord, M. Elsabbagh, G. Baird, and V. Vanderweele, Lancet, 392, 508 (2018).
  13. T. C. Südhof, Nature, 455, 903 (2008).
  14. S. Jamain, H. Quach, C. Betancur, et al., Nat. Genet., 34, 27 (2003).
  15. C. Zweier, E. K. de Jong, M. Zweier, et al., Am. J. Hum. Genet., 85, 655 (2009).
  16. M. Missler, and T. C. Südhof, Trends Genet., 14, 20 (1998).
  17. Y. Hata, S. Butz, and T. C. Südhof, J. Neurosci., 16, 2488 (1996).
  18. M. Irie, Y. Hata, M. Takeuchi, et al., Science, 277, 1511 (1997).
  19. K. Tabuchi, T. Biederer, S. Butz, and T. C. Sudhof, J. Neurosci., 22 (11), 42 (2002).
  20. M. Missler, W. Zhang, A. Rohlmann, et al., Nature, 423, 939 (2003).
  21. K. Tabuchi, J. Blundell, M. R. Etherton, et al., Science, 318, 71 (2007).
  22. S. Jamain, K. Radyushkin, K. Hammerschmidt, et al., Proc. Natl. Acad. Sci. USA, 105, 1710 (2008).
  23. M. C. Phelan, R. C. Rogers, R. A. Saul, et al., Am. J. Med. Genet., 101, 91 (2001).
  24. Н. В. Соловьева и Н. С. Кицул, Аутизм и нарушения развития, 14, 13 (2016).
  25. M. Sheng and E. Kim, J. Cell Sci., 113, 1851 (2000).
  26. C. M. Durand, C. Betancur, T. M. Boeckers, et al., Nat. Genet., 39, 25 (2007).
  27. N. Okamoto, T. Kubota, Y. Nakamura, et al., Am. J. Med. Genet. Part A, 143, 2804 (2007).
  28. T. M. Böckers, M. G. Mameza, M. R. Kreutz, et al., J. Biol. Chem., 276, 40104 (2001).
  29. G. Roussignol, F. Ango, S. Romorini, et al., Neuroscience 25 (14), 3560 (2005).
  30. O. Bozdagi, T. Sakurai, D. Papapetrou, et al., Mol. Autism, 1 (1), 15 (2010).
  31. J. Peça, C. Feliciano, J. T. Ting, et al., Nature, 472 (7344), 437 (2011).
  32. M. Kouser, H. E. Speed, C. M. Dewey, et al., Neuroscience 33 (47), 18448 (2013).
  33. A. Shcheglovitov, O. Shcheglovitova, M. Yazawa, et al., Nature, 503 (7475), 267 (2013).
  34. J. P. Martin and J. Bell, J. Neur. Neurosurg. Psych., 6, 154 (1943).
  35. C. Bagni, and B. A. Oostra, Am. J. Med. Genet. Part A. 161 (11), 2809 (2013).
  36. D. Ebrahimi-Fakhari, and M. Sahin, Curr. Opin. Neurol. 1 (617), 1 (2015).
  37. S. Chang, S. M. Bray, Z. Li, et al., Nat. Chem. Biol., 4 (4), 256 (2008).
  38. L. K. K. Pacey, S. P. Heximer, and D. R. Hampson, Mol. Pharmacol., 76 (1), 18 (2009).
  39. B. M. Dolan, S. G. Duron, D. A. Campbell, et al., Proc. Natl. Acad. Sci. USA, 110 (14), 5671 (2013).
  40. T. Kishino, M. Lalande, and J. Wagstaff, Nat. Genet., 15 (1), 70 (1997).
  41. T. Matsuura, J. S. Sutcliffe, P. Fang, et al., Nat. Genet., 15, 74 (1997).
  42. Y. H. Jiang, D. Armstrong, and U. Albrecht, Neuron, 21 (4), 79 (1998).
  43. P. L. Greer, R. Hanayama, B. L. Bloodgood, et al., Cell, 140 (5), 704 (2010).
  44. R. J. Kelleher and M. F. Bear, Cell, 135 (3), 401 (2008).
  45. H. Y. Zoghbi and M. F. Bear, Cold Spring Harb. Symp. Perspect. Biol., 4 (3), 98 (2012).
  46. T. T. Riday, E. C. Dankoski, M. C. Krouse, et al., J. Clin. Invest., 122 (12), 4544 (2012).
  47. A. Sato, CNS Neurol. Disord. Drug Targets, 15 (5), 533 (2016).
  48. J. O. Lipton and M. Sahin, Neuron, 84 (2), 275 (2014).
  49. T. S. Lisse and M. Hewison, Cell Cycle, 10 (12), 1888 (2011).
  50. Y. Liu, D. Zhang, and X. Liu, Int. Rev. Immunol., 34 (1), 50 (2015).
  51. J. Zhou and L. F. Parada, Curr. Opin. Neurobiol., 22 (5), 873 (2012).
  52. D. Ehninger, S. Han, C. Shilyansky, et al., J. Nat. Med., 14 (8), 843 (2009).
  53. P. Curatolo, R. Bombardieri, and S. Jozwiak, Lancet, 372 (9639), 657 (2008).
  54. D. J Allingham-Hawkins, R. Babul-Hirji, D. Chitayat, et al., Am. J. Med. Genet., 83 (4), 322 (1999).
  55. L. Meikle, K. Pollizzi, A. Egnor, et al., J. Neurosci., 28 (21), 5422 (2008).
  56. D. Ehninger and A. J. Silva Trends Mol. Med., 17 (2), 78 (2011).
  57. P. Tsai and M. Sahin, Curr. Opin. Neurol., 24 (2), 106 (2011).
  58. C. H. Kwon, B. W. Luikart, C. M. Powell, et al., Neuron, 50 (3), 377 (2006).
  59. Q. Xiong, H. V. Oviedo, L. C. Trotman, and A. M. Zador, J. Neurosci., 32 (5), 1643 (2012).
  60. J. Guy, J. Gan, J. Selfridge, et al., Science, 315 (5815), 1143 (2007).
  61. R. P. Ghosh, R. A. Horowitz-Scherer, T. Nikitina, et al., Mol. Cell. Biol., 30 (19), 4656 (2010).
  62. R. Z. Chen, S. Akbarian, M. Tudor, and R. Jaenisch, Nat. Genet., 27 (3), 327 (2001).
  63. J. Guy, B. Hendrich, M. Holmes, et al., Nat. Genet., 27 (3), 322 (2001).
  64. P. V. Belichenko, E. E. Wright, N. P. Belichenko, et al., J. Comp. Neurol., 514 (3), 240 (2009).
  65. S. Ricciardi, E. M. Boggio, S. Grosso, et al., Hum. Mol. Genet., 20 (6), 1182 (2011).
  66. R. A. Segal and M. E. Greenberg, Annu. Rev. Neurosci., 19, 463 (1996).
  67. D. M. Katz, Eds. G. R. Lewin, and B. D. Carter, Berlin: Springer-Verlag, 220, 481 (2014).
  68. R. Deogracias, M. Yazdani, M. P. J. Dekkers, et al., Proc. Natl. Acad. Sci. USA, 109 (35), 14230 (2012).
  69. T. Ziemssen, T. Kümpfel, W. E. F. Klinkert, et al., Brain, 125 (11), 2381 (2002).
  70. A. Angelidou, K. D. Alysandratos, S. Asadi, et al., J. Autism Dev. Disord., 41 (11), 1579 (2011).
  71. J. Wu, C. M. G. De Theije, S. L. Da Silva, et al., Neuropharmacology, 97, 220 (2015).
  72. F. Jia, B. Wang, L. Shan, et al., Pediatrics, 135 (1), 196 (2015).
  73. T. S. Lisse, T. Liu, M. Irmler, et al., FASEB J., 25 (3), 937 (2011).
  74. T. S. Lisse, and M. Hewison, Cell Cycle, 10 (12), 1888 (2011).
  75. H. W. Querfurth and F. M. LaFerla, N. Engl. J. Med., 362 (4), 329 (2010).
  76. D. J. Selkoe, Science, 298 (5594), 789 (2002).
  77. S. W. Scheff, D. A. Price, F. A. Schmitt, et al., Neurology, 68 (18), 1501 (2007).
  78. R. D. Terry, E. Masliah, D. P. Salmon, et al., Ann. Neurol., 30 (4), 572 (1991).
  79. H. W. Querfurth and F. M. LaFerla, N. Engl. J. Med., 362 (4), 329 (2010).
  80. S. T. DeKosky and S. W. Scheff, Ann. Neurol., 27 (5), 457 (1990).
  81. M. Wynn, J. Gen. Intern. Med., 37 (10), 2576 (2022).
  82. M. A. Mukhamedyarov, S. N. Grishin, E. R. Yusupova, et al., Cell Physiol. Biochem., 23 (1-3), 109 (2009).
  83. M. A. Mukhamedyarov, A. Y. Teplov, S. N. Grishin, et al., Muscle & Nerve, 43 (6), 872 (2011).
  84. М. А. Мухамедьяров и А. Л. Зефиров, Успехи физиол. наук, 44 (1), 55 (2013).
  85. Y. Wang, Z. Yu, H. Ren, et al., J. Chem. Neuroanat., 63, 1 (2015).
  86. I. Zueva, J. Dias, S. Lushchekina, et al., Neuropharmacology, 1 (155), 131 (2019).
  87. M. A. Mukhamedyarov, P. N. Grigor'ev, E. A. Ushanova, et al., Bull. Exp. Biol. Med., 165 (5), 669 (2018).
  88. L. Dupuis and J. P. Loeffler, Curr. Opin. Pharmacol., 9 (3), 341 (2009).
  89. M. Dewil, V. F. dela Cruz, L. Van Den Bosch, et al., Neurobiology of Disease, 26 (2), 332 (2007).
  90. T. W. Gould, R. R. Buss, S. Vinsant, et al., J. Neurosci., 26 (34), 8774 (2006).
  91. C. Rouaux, I. Panteleeva, F. Rene, et al., J. Neurosci., 27 (21), 5535 (2007).
  92. M. M. Lino, C. Schneider, and P. Caroni, J. Neurosci., 22 (12), 4825 (2002).
  93. A. Pramatarova, J. Laganiere, J. Roussel, et al., J. Neurosci., 21 (10), 3369 (2001).
  94. G. Dobrowolny, M. Aucello, E. Rizzuto, et al., Cell Metab., 8 (5), 425 (2008).
  95. H. Narai, Y. Manabe, M. Nagai, et al., Neurol. Int., 1 (1), 16 (2009).
  96. B. J. Turner, S. Ackerley, K. E. Davies, et al., Hum. Mol. Genet., 19 (5), 815 (2010).
  97. C. S. Lobsiger, S. Boillee, M. McAlonis-Downes, et al., Proc. Natl. Acad. Sci. USA, 106 (11), 4465 (2009).
  98. A. Gorlewicz, J. Wlodarczyk, E. Wilczek, et al., Neurobiol. Dis., 34 (2), 245 (2009).
  99. D. Frey, C. Schneider, L. Xu, et al., J. Neurosci., 20 (7), 2534 (2000).
  100. R. Mancuso, E. Santos-Nogueira, R. Osta, et al., Clin. Neurophysiol., 122 (8), 1660 (2011).
  101. J. M. Shefner, M. Cudkowicz, and R. H. Brown, Muscle & Nerve, 34 (5), 603 (2006).
  102. М. А. Мухамедьяров, А. М. Петров, П. Н. Григорьев и др., Журн. высшей нервной деятельности им. И.П. Павлова, 68 (5), 551 (2018).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023